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Abstract

Repetitive DNA sequences, as transposable elements (TEs) and satellite DNA (satDNA) spread and diversify within host genomes, impacting
genome biology in numerous ways. In the first part of this review, we emphasize the evolutionary importance of satDNAs and TEs, providing
a short summary of their roles and the mechanisms by which they influence the structure and function of genomes. We also discuss the
broad, complex, and extensive relationships between TEs and satDNAs. Following that, we bring together different mechanisms on the
generation of satDNA from TE, as it has been demonstrated that almost any part of any type of TE can undergo tandemization and produce
novel satDNAs. Importantly, we here present a hypothesis that would explain the existence of particular types of monomers, namely
composite satDNA monomers which display multiple subsequent stretches of similarity to various TEs, for which the explanation was lacking
so far. We propose that even highly shuffled and degraded TE remnants residing in heterochromatin ‘TE graveyards’ can give rise to new
satDNA sequence monomers, transforming these genomic loci into DNA ‘recycling yards'. Furthermore, we emphasize important

evolutionary questions regarding the causes, mechanisms, and frequency of these occurrences.
Keywords: satellite DNAs; transposable elements; heterochromatin; genome evolution.

1. Introduction

Repetitive DNA components build a significant portion of eu-
karyotic genomes. They are traditionally divided into 2 major
groups, satellite DNAs (satDNAs), comprised of arrays of
sequences repeated in tandem, and transposable elements
(TEs), interspersed throughout the genome.'™ According to
conventional concepts, satDNAs are dominant in the pericen-
tromeric, subtelomeric, and interstitial chromosomal regions,
where they constitute blocks of constitutive heterochromatin.®
The most basic classification of TEs divides them into 2 main
groups according to their transposition intermediates: Class I
(Retrotransposons), and Class II (DNA transposons). In the
‘copy-and-paste’ mechanism employed by Class I elements,
an RNA intermediate is present. The majority of Class II ele-
ments are mobilized by ‘cut-and-paste’ process, in which the
transposon is excised and transferred to a new genomic site.”

SatDNAs and TEs are often called the ‘dark matter’ of the
genome, as their functions were initially unknown. In add-
ition, the repetitive nature of these sequences causes significant
technical problems in sequencing and assembly, resulting in
their general underrepresentation in outputs of genome
projects.®” New sequencing methodologies, in particular
long-read sequencing supported by specialized bioinformatics
tools, are on the way to solve these problems and to shed more
light on the genomic composition of the ‘dark matter’ re-
peats.>1% As a result, scientific literature has extensively cov-
ered numerous topics related to the structure, organization,
function, and evolution of these sequences in diverse model
and non-model organisms, enabling new insights into

repetitive DNAs.®'"™'” Both satDNAs and TEs have tremen-
dous impact on genome architecture and evolution, making
them crucial players in the process of comprehending the over-
all structure and function of the genome.

In this article, we bring the basic notions on satDNAs and
TEs, summarize their evolutionary significance and their cru-
cial contributions to the constitution and evolution of eukary-
otic genomes. We discuss the intricate and extensive
connections between TEs and satDNAs, as new data are en-
hancing our understanding of these relationships. We sum-
marize various mechanisms regarding the generation of
satDNAs from TEs. Notably, we present a hypothesis that
seeks to explain the existence of satDNA sequences that share
short stretches of similarity with multiple TEs, suggesting that
these satDNA sequences may originate from ‘TE graveyards’.

2. Evolutionary significance of satDNAs
and TEs

TEs and satDNAs play crucial roles in various processes that
significantly influence the structure and function of the gen-
ome. While TEs and satDNAs differ in their structures, mech-
anisms of dissemination, and organizational patterns, there
are numerous connections between them, which will be ex-
plored in the following sections. On one hand, they often com-
plement each other in some of the genomic functions (Fig. 1).
On the other hand, due to substantial differences in their struc-
ture and organization, many of the roles that TEs and
satDNAs fulfil in the genome are specific to certain subclasses
of these repetitive elements.
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Fig. 1. Schematic depiction of the major contributions of satDNAs (yellow) and TEs (red) to genome structure, function, and evolution. Shared roles are

denoted by orange arrows.

As the main common role, TEs and satDNAs shape the
overall genomic landscape by inducing structural rearrange-
ments through illegitimate recombinations, deletions, inver-
sions, translocations, and segmental duplications. Both TEs
and satDNAs can make significant changes to the genome
size.”07>

The domestication of TEs has yielded numerous proteins,
which are co-opted for functions in physiology of many spe-
cies. For instance, numerous DNA-binding proteins and tran-
scription factors are derived from transposases, and the
majority of primate-specific regulatory sequences are derived
from TEs (7). In addition, TE machinery serves as a mediator
in the formation of intron-free gene copies (retrogenes), which
can lead to the evolution of a novel trait through neofunction-
alization.”® TE can also serve as telomeric sequences at the
ends of chromosomes, such as in Drosophila.>”

TEs extensively affect regulatory networks that are involved
in processes like dosage compensation, immunity, and early
embryonic development. There are numerous examples of
changes in phenotype driven by TE activity, some of them
being beneficial for the organism.'? The colour polymorphism
of the peppered moth is a well-known case of such adaptive,
TE-induced change.”® Recently, their involvement in the
mechanism that facilitated tail-loss process in hominoids has
been proposed.”” In addition to the direct gene inactivation,
TE insertions can also affect the expression of nearby genes
by alterations at the epigenetic level (eg histone modifications
and chromatin packing).’® TE Helitrons were shown to be
powerful genome shuffling agents with wide-reaching bio-
logical consequences.’’ TE movement, regulatory activities,
and effects on genome integrity can also cause (and intensify)
the effects of many diseases.” In addition, differences in TEs
distribution can influence speciation through the formation
of reproductive isolation.**

Centromeres are essential for proper segregation of chro-
mosomes, and satDNAs and TEs are the most common
DNA component in centromeres of animals and plants.*?
Typically, satDNAs and TEs extend to the pericentromeric re-
gions much more than it would be necessary for the centro-
meric function alone. Pericentromeric satDNA repeats were

shown to be the main contributors to large-scale nuclear or-
ganization that supports general transcription.®* In addition,
satDNA sequences have been continuously associated to evo-
lutionary breakpoint areas and fragile sites in a variety of
taxa.'? There are numerous neurological, congenital, and de-
velopmental disorders caused by short tandem repeat expan-
sions,”® and changes in the repeat copy number can also
affect social bahaviour.*®

SatDNAs have key roles in heterochromatin formation and
maintenance,”” and contribute to heterochromatin organisa-
tion in embryonic stem cells.>® TEs were also suggested to be
mediators and facilitators of heterochromatin formation,
through recruitment of Heterochromatin Protein 1 and repres-
sive chromatin marks.>® Different studies revealed that
satDNA transcription and satDNA transcripts are involved
in various cellular processes, while the improper regulation
of satDNA transcription was shown to be associated with gen-
omic instability and human diseases.'**® Pericentromeric
satDNA transcription is significantly elevated across many
cancers, and these transcripts have a variety of biological func-
tions in either aiding the cancerous state (mutation induction,
disruption of epigenetic regulation, tumour cell proliferation,
inflammation, resistance to cancer treatment, destabilizing
genome integrity), or opposing it (innate immune system acti-
vation). Elevated transcription of pericentromeric satDNAs is
typically triggered by various environmental stressors, initial-
izing the mechanism that can affect regulation of many genes
through reversible changes in the chromatin state.*” Under
stress conditions, TEs are also activated. This activation may
modify genes structure and activity of genes, aiding in the pro-
cess of adaptation and survival.*'**?

SatDNAs are involved in other numerous processes that
are crucial for the cells. For example, it has been demon-
strated that the formation of the chromocenter and the main-
tenance of the entire genome within the nucleus rely on the
presence of satDNA repeats located across multiple chromo-
somes. The chromocenter contains DNA-binding proteins
and physically links different chromosomes by bringing to-
gether their corresponding pericentromeric satDNA
repeats.*?
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3. Relationships between satDNAs and TEs

An increasing number of reports shows that satDNAs and TEs
are interconnected in various ways (reviewed in
Satovié-Vuksi¢ and Plohl'® and Zattera and Bruschi**). The
heterochromatin is the most frequent site of interaction, as
both types of repetitive sequences are particularly prevalent
in this genomic region. There, they not only coexist but also
form complex and dynamic networks. It was observed that 1
satDNA array can be directly followed by satDNA of another
type, and different types of TEs can be simultaneously found
in the immediate vicinity of a satDNA. TEs can be inserted
into satDNA arrays or inserted into other TEs.*> Moreover,
cases of multiple insertions have been reported, such as a TE
being inserted within another TE, both of which are located
within a satDNA array.*®*”

Neither satDNA nor TEs are exclusively limited to hetero-
chromatin.'®*® SatDNA sequences outside of the heterochro-
matin can be found in different organizational forms: as single
monomers or monomer fragments, in arrays of various (usual-
ly short) length, or incorporated into TEs.*>»*"=?

TEs significantly contribute to satDNA evolution by gener-
ating repeats that can be dispersed through the genome, and in
some cases, amplified into long arrays of novel satDNAs.
SatDNA repeats of various species were formed by tandemiza-
tion of a complete TE or its subsegments and structural com-
ponents.’*~*° This way, satDNA can arise from the sequence
segment of a long-terminal repeat (LTR), gag or pol domains
of LTR retrotransposons; untranslated regions of LINE; ter-
minal inverted repeats or sequence segments from the central
parts of DNA transposons.**®! Additionally, satDNAs can
be formed through the expansion of short-internal arrays
found within TEs.’%*%%% A common example of such ex-
pansions is observed in Helitron/Helentron TEs, which have
conserved sequence segments at their ends, while their central
regions often contain arrays of satDNA-like repeats.

TEs are also proposed to facilitate and contribute to genom-
ic dispersal of satDNA repeats.*> 1626476 [ line with that, it
was shown that TEs are responsible for novel, highly dispersed
organization of numerous satDNAs across the whole-genome,
completely contrasting canonical concepts of compartment-
localized satDNA organization.’* In extreme cases, complete
satelitomes (entirety of satDNAs in 1 organism), comprised
of numerous satDNAs, can be based on TEs (being
TE-derived, TE-incorporated, or TE-propagated).’”

Hybrid forms between satDNAs and TEs also exist. For ex-
ample, ‘transitional’ 154 TR sequence is at the same time a tan-
dem repeat embedded in a TE, but also found as large
expanded arrays within constitutive heterochromatic loci,
similar to classical satDNAs.®” The Cg170/HindIIl sequence
displays fluctuation between 3 forms, TE-incorporated, stand-
alone satDNA arrays, and an ‘intermediate’ form. In the case
of the latter, tandem repeats were found to be associated with
TE Helitron components only on one side of the array.”’
These intermediate arrays may result from recombination
events between element-incorporated and standalone ar-
rays.”* Alternatively, they may be generated by aberrant roll-
ing circle replication (RCR), as will be discussed later.

4, I\)/Iechanisms that generate satDNAs (from
TEs

Regarding the mechanisms of satDNA generation, general
models of satDNA evolution suggest 2 stages in their

emergence: amplification processes which generates small
number of tandem repeats, followed by their expansion into
longer arrays.®® Formation of tandem repeats can occur
through different mechanisms. For example, in a process not
necessarily related to TEs, such DNA replication. During
replication, the displacement of the DNA strand can happen,
resulting in mispairing of the complementary bases and loop
formation. Staggered mispairing in the leading DNA strand re-
sults in a duplication of the template sequence®® (Fig. 2a).
These simple repeats can expand into satDNA arrays via un-
equal exchange.®®

Different hypotheses exist, providing potential explanations
for the formation of satDNA sequences from TEs or from re-
peats present within TEs. Some of them are based on the afore-
mentioned concept of loop formation.

Izsvak et al.”® propose the model explaining generation of
tandem repeats from a TE, based on the construction of a
stem-and-loop structure. During DNA replication, after pass-
ing the TE, the newly synthesized DNA strand can fold back
on itself, creating a loop structure. Subsequently, this looped
strand may disassociate from the replication complex. DNA
synthesis then reinitiates at the 3’ end of the loop, using the
nascent strand as a new template to replicate the TE again,
and forming the stem. The duplicated segment, containing 2
copies of the TE, is then released as an extrachromosomal
stem-and-loop structure (Fig. 2b). This structure can be incor-
porated into a new location in the genome, facilitated by local
homology between the target DNA sequence and the amplified
extrachromosomal fragment. The mechanism is based on
studying the Angel MITE in zebrafish, where the ability of in-
trastrand base pairing of single-stranded Angel molecules was
demonstrated in vitro.

The mechanism for the formation of satDNAs from
Miniature Inverted-repeat TEs (MITEs) was put forward by
Hikosaka and Kawahara,”" based on studying Xstir sequences
in the genomes of several Xenopus species. Three types of
Xstir-related structures were observed, including MITE, tan-
dem array, and a composite structure of MITE and tandem ar-
ray. The alignment analyses revealed that tandem repeats may
be derived from internal sequences of the MITE. The proposed
mechanism involves the formation of a stem-and-loop struc-
ture by the 2 elements in close proximity. This structure forms
during DNA replication due to the delay on 1 DNA strand.
During the delay, nucleases excise the loop portion of the
stem-and-loop structure, and the remaining segments are
joined together. As a result, a ‘hybrid’ element is formed, con-
taining segments from both of the original elements.
Repeating this process contributes to the additional extension
of the construct. The resulting sequences still represent inter-
spersed repeats; however, with the involvement of recombin-
ation processes, they could progress into arrays of tandem
repeats, satDNAs (Fig. 2c).

The mechanism proposed by Scalvenzi and Pollet®” explains
the evolution of MITE and related satDNAs. It is based on the
Tcl/mariner MITE in Xenopus, named miDNA4. MiDNA4
possesses a satellite DNA that exists as a single monomer or
as an array of a variable number of copies. They suggest
that the ancestral MITE captured a pre-existing tandem re-
peat. The satDNA-like sequence they described is flanked by
AT-rich sequences that form short direct repeats of 5 or
more base pairs. They propose that these microhomologies
can lead to internal deletions and integrations during the proc-
esses of DNA replication or repair. This can result in longer
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Fig. 2. Schemes illustrating different mechanisms for the generation of satDNAs or tandem repeats. a) Staggered mispairing in the leading DNA strand
results in a duplication of the template sequence. Adapted from Moran and Morish.®® b) Formation of the duplicated segment after newly synthesized
DNA strand folds back on itself creating a loop structure. The newly formed extrachromosomal stem-and-loop structure can be incorporated into a new
location in the genome. Adapted from Izsvék et al.”® c) Molecular mechanisms for creating tandem repeats from TEs in close proximity. Stem-and-loop
structure is formed during replication by the 2 elements in close proximity. Nucleases excise the loop portion of the stem-and-loop structure, and the
remaining segments are joined. Repeating this process contributes to the additional extension of the construct. Adapted from Hikosaka and Kawahara.”’
d) The expansion of tandem repeats within MITE and formation of satDNA arrays. Tandem repeats within TEs can experience copy number changes.
Subsequently, TEs containing longer tandem arrays can give rise to classical satDNA arrays after accumulating mutations in the terminal segments.
Adapted from Scalvenzi and Pollet.®? ) RCR mechanism contributing to the formation of tandem repeats. Terminator sequence can be removed from the
circular DNA template resulting in aberrant replication, followed by insertion of the resulting concatemer. Adapted from McGurk and Barbash® and Xiong
et al.”? f) Multiple insertion of the same type of TE into a single genomic site, forming a tandem. Adapted from McGurk and Barbash.®® g) Generation of

tandem sequences via recombination between LTRs of 2 different elements. Adapted from McGurk and Barbash.®®

internal arrays. Over time, MITEs containing longer tandem
arrays can give rise to classical satDNA arrays devoid of in-
verted repeats at element ends, by accumulating mutations
in the terminal segments (Fig. 2d).

TE Helitrons have the ability to capture various fragments
of the host genome,”® which often include tandem repeats,
as shown in multiple studies.®*>”*® DNA motifs that are pro-
moting the formation of stem-and-loop structures, like direct
and inverted repeats or palindromes, can also be found within
the structure of Helitron/Helentron elements.”®> They enable
the Helitrons to participate in the above-described processes.
In addition, Helitrons employ several mechanisms for their
propagation and for the amplification or tandemization of
their segments. They utilize an RCR mechanism during trans-
position.”” The RCR initiates at the 5’ end and advances to-
wards the 3’ end, where a terminal hairpin structure serves
as a recognition site for termination and subsequent DNA

cleavage. Through an intramolecular recombination event in-
volving internally repeated sequence, the 3’ terminator se-
quence can be removed from the circular DNA template. If
that occurs, the subsequent cycle of replication generates a
tandem array of truncated TEs. This causes the sequences at
the Helitron’s 5’ end to become amplified more frequently
than those at the 3’ end. Such formation of incomplete
Helitron templates may contribute to further partial RCR, re-
sulting in additional multiplication of the internal sequences
(Fig. 2e). Finally, the tandemized, truncated Helitron copies
are integrated into the new genomic location.”* The mechan-
ism proposed by Xiong et al.”* is based on their analysis of
27 plant genomes, which revealed numerous tandem arrays
of partially decayed, truncated Helitrons. Many of the de-
tected arrays had multiple 5’ but single 3’ Helitron end, while
the number of repeats in arrays ranged from several to several

hundreds.

GZ0Z JaquianoN 9z uo 1sanb Aq 6928928/9201ESP/S/ZE /3101 /ydIeasaieup/wod dno olwapeoe//:sdiy Woll papeojumo(]



SatDNAEs rising from TE graveyards

By analysing numerous genomes from 5 populations of
Drosopbhila melanogaster, McGurk and Barbash®® revealed
that TEs commonly form dimers. Their results suggest that in-
sertion site preference is the major mechanism by which
dimers are formed and that their formation is related to the pe-
riods of active transposition. They believe that the abundance
of TE dimers has the potential to provide source material for
expansion into satDNA arrays, based on their discovery of
copy number expansion of the DNA transposon hobo to 16
tandem copies. These authors present multiple potential
mechanisms for generating tandem repeats from TEs, 1 of
which is the previously described RCR. The second mechan-
ism relies on a double or multiple insertion of the same type
of element into a single genomic site, forming a tandem.
This is possible for TEs that create target site duplications
(TSDs) upon insertion, as this allows for subsequent inser-
tion(s) into the same target site (Fig. 2f). The third mechanism
focuses on satDNAs derived from TEs containing repetitive
segments such as LTRs and/or tandemly repeated regulatory
motifs. These segments serve as substrates for expansion by
unequal exchange (Fig. 2g). For example, ectopic recombin-
ation between LTRs of 2 different elements could generate
tandemized retrotransposons that share 1 LTR.®® Similar
mechanism was proposed by Wong and Choo,”” based on
similarities between TE components and satDNAs reported
in various organisms, such as wheat, Arabidopsis,
Drosophila, and the Cetaceans. They suggested that satDNA
repeats originate from the duplication of a portion of a TE se-
quence. This duplication occurs through unequal crossing-
over between homologous TE elements, which may be located
on the same chromosome or on different chromosomes, pre-
sumably in a similar way as in Fig. 2g.

Zattera and Bruschi** update and summarize recorded
cases of TEs that have given rise to the tandem repeat sequen-
ces. Based on that, they propose that Non-Homologous
End-Joining (NHE]) and Non-Allelic Homologous
Recombination (NAHR) DNA repair mechanisms may con-
tribute to the expansion of satDNAs from TE. If
microhomology-initiated NHE] occurs between sister chro-
matids, it can result in a variety of events, including sequence
duplications. This mechanism is known to play a dominant
role in gene duplications and is significant in completing
some TE-related instability events.** The NAHR mechanism
offers important insights into the expansion of repeat arrays.
It relies on the location of the paralogous TE copies, which
serve as the template for the repair of the chromatid that has
suffered the double-strand break. This may lead to tandem du-
plications of TEs (in the same way as depicted in Fig. 2g). This
way, intra- or inter-chromatid NAHR may contribute to the
expansion of the initial repeat in a way similar to the unequal

crossovers.44

5. SatDNAs emerging from TE
heterochromatin graveyards

As discussed above, it has previously been observed that par-
ticular satDNA could be derived from a particular TE. Here,
we would like to discuss 1 specific type of composite
satDNA monomers, which has not been addressed previously.
In several instances, we have observed that the sequence of a
satDNA monomer can contain multiple short segments that
resemble various types of TEs.>*>5 In these cases, whether
the satDNAs originated from TEs was debatable as they could

not be assigned to any specific TE. The origin and the charac-
teristics of monomer sequences structured in this way are cur-
rently an open question, as they appear to result from a series
of complex events. In this chapter, we propose a scenario that
aims to explain their origin.

TEs are frequently enriched in constitutive heterochroma-
tin, part of the genome with a reduced number of functional
genes.”” TEs can insert themselves next to the other repetitive
sequences via shared TSD, as described above. Additionally,
they can integrate into other repetitive sequences, including
previously inserted TEs of the same or different type. The in-
sertion of TEs into other TEs produces what is known as
nested insertion.®” Therefore, multiple insertions are com-
mon, and such loci are known to serve as hotspots and target
sites for further TEs insertions.*®®! Sometimes, due to the im-
perfect process of transposition, truncated versions of TEs
may be integrated,”” increasing the diversity of sequences at
the insertion sites.

Many of the inserted copies of TEs progressively accumu-
late mutations and deletions over time.®* Genomic loci that
are rich in numerous mutated and/or truncated elements in
close proximity were observed.*”** This can result in genomic
segments that present short stretches of similarity with differ-
ent TEs, and over time, their remnants eventually diverge to
the point of almost being unrecognizable as TEs.?? Related
to this, the term ‘graveyard of dead transposons’ has often
been used for heterochromatin because it harbours numerous
remnants from ancient TE insertions,® features a ‘clustered-
scrambled’ organization and a high density of repetitive se-
quences,®* and contains piRNA clusters that are particularly
enriched in TE relics.®’

We have reported the presence of the complex and ‘shuffled’
loci in the genome of the bivalve Crassostrea gigas.*” These
loci appear to be generated by insertion, deletion, tandemiza-
tion, and recombination events, involving satDNAs and struc-
tural components of the Helitron TE. In these instances,
different parts of the elements were truncated, or tandemized,
and such structures were found inserted within other (com-
plete or truncated) elements. We found central arrays of tan-
dem repeats within Helitron/Helentron elements that were
oriented in different directions or organized in arrays of differ-
ent lengths. The same type of arrays was observed both within
and outside of the elements, and different types of tandem
arrays were identified within a single element, as well as the
same type of arrays being found across different Helitron
elements.

While monomer sequences of different satDNAs have very
little or nothing in common, they frequently contain distinct
sequence features, such as conserved motifs, inverted repeats,
and palindromes.®® It has been proposed that these structural
features may play a role in providing signals that aid mecha-
nisms responsible for the fast proliferation of satDNA repeats,
both within arrays and throughout the genome.*’

In the genomic sites described above, DNA segment tan-
demization could occur through different mechanisms, aided
by such sequence motifs which often accompany TEs. We pro-
pose that the tandemization and subsequent propagation of
DNA segments from these genomic regions would result in
novel satDNA repeats. These repeats are likely to include short
stretches of similarity to different types of TEs within the
monomer sequence (Fig. 3). Therefore, such satDNA sequen-
ces would indeed have their origin in what we refer to as ‘TE
graveyards’. These composite satDNA sequences reveal that
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Fig. 3. The proposed mechanism for forming composite satDNA monomers with short stretches of similarity to multiple TEs through a series of
interlacing events, including insertions, mutation accumulation, and sequence degeneration.

the DNA found in ‘graveyards’ is recycled, transforming het-
erochromatin TE graveyards into dynamic DNA ‘recycling
yards’.

It has been proposed that degraded copies of interspersed re-
peats may constitute a significant fraction of unassigned gen-
ome sequences.®” The potential roles of these deteriorated
elements as resources for host genomes have also been dis-
cussed. Truncated TE copies can modulate host gene expres-
sion by serving as new regulatory sequences, alternative
splice sites, polyadenylation signals, and new transcription
factor binding sites.*® We would add the formation of novel
satDNA sequences to the potential usage of these remnants.

The considerations presented raise compelling evolutionary
questions: How does selection operate on the newly generated
satDNA sequences? Do the newly generated composite
satDNA sequences acquire functional roles?

Whether these sequences obtain important roles in the gen-
ome and participate in functional interactions or not, this
underscores a fascinating reality of genomes utilizing the avail-
able DNA with remarkable efficiency. Composite satDNA
sequences show us that even the DNA residing in ‘graveyards’
is being recycled, transforming heterochromatin TE grave-
yards into productive ‘recycling yards’.

6. Conclusions and future perspectives

In this article, we have outlined the importance of satDNA se-
quences and TEs in genome evolution and architecture, and
their involvement in various genomic processes and functions.
It is also evident that TEs and satDNAs form a complex net-
work of sequences that significantly impact the structure
and, ultimately, the functionality of every eukaryotic genome.
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The intricate and wide-ranging connections between TEs and
satDNAs show that these 2 types of sequences exist in a gen-
ome in various (and transient) forms. Here, we put forward
the idea that even heavily shuffled and degraded TE remnants
residing in the ‘heterochromatin graveyards’ give rise to the
novel composite satDNA sequences, turning such genomic
loci into DNA ‘recycling yards’.

This observation offers a foundation for various future
studies that will explore the causes, mechanisms, and possible
functional significance of TE-based composite repetitive com-
ponents in eukaryotic genomes. Gaining insights into these as-
pects will deepen our understanding of the broader
implications of such sequences in genome architecture and
function.
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