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A B S T R A C T

Majority subspace clustering (SC) algorithms depend on one or more hyperparameters that need to be tuned for 
the SC algorithms to achieve high clustering performance. This is often performed using grid-search, assuming 
that held out set is available. In some domains, such as medicine, this assumption does not hold true in many 
cases. To address this problem, we propose an approach to label-independent hyperparameter optimization by 
applying the SC algorithm to the data and use the resulting cluster assignments as pseudo-labels to compute 
clustering quality metrics (e.g., accuracy (ACC) or normalized mutual information (NMI)) across a predefined 
hyperparameter grid. Assuming that ACC (or NMI) is a smooth function of hyperparameter values, it is possible 
to select subintervals of hyperparameters, which are then iteratively further split into halves or thirds until a 
relative error criterion is satisfied. In principle, the hyperparameters of any SC algorithm can be tuned using the 
proposed method. We demonstrate this approach on five single-view SC algorithms and two multi-view SC al
gorithms, comparing the achieved performance with their oracle versions across six datasets for single-view 
algorithms and three datasets for multi-view algorithms. The proposed method typically achieves clustering 
performance that is up to 7 % lower than that of the oracle versions. We also enhance the interpretability of the 
proposed method by visualizing subspace bases, estimated from the computed clustering partitions. This aids in 
the initial selection of the hyperparameter search space.

1. Introduction

Clustering is a fundamental problem in unsupervised learning. It has 
numerous applications, including medical image analysis [1], single-cell 
transcriptomics [2], pattern recognition and speaker identification [3], 
among others. Due to the complex shapes of samples spaces, 
distance-based clustering algorithms often struggle to cluster data 
accurately in the original ambient domain. However, if a high-quality 
data-affinity matrix can be estimated, spectral methods can achieve 
high clustering performance [4]. Subspace clustering (SC) algorithms 
focus on learning a data affinity matrix under the assumption that the 
data are generated by a union-of-linear subspaces [5]. Representative SC 
algorithms are based on self-expressive model, where sparsity constraint 
is imposed on representation matrix in [5], and combination of low-rank 
and sparsity constraint in [6]. The least squares regression (LSR) SC 
algorithm in [7] yields analytical solution for the representation matrix. 
Because contemporary data are often recorded across multiple modal
ities or represented by various multiple features, multi-view extensions 
of SC algorithms have also been proposed in [8]. In particular, to avoid 
problems associated with hyperparameter tuning, researchers in [9] 
proposed a parameter-free multi-view SC algorithm. To address the 

large-scale SC problem, researchers in [10] developed multi-view al
gorithm with linear complexity. However, real world data do not always 
originate from linear subspaces. To address this issue, SC algorithms can 
be formulated in a Reproducing Kernel Hilbert Space (RKHS), also 
known as the feature space, [11]. An alternative to kernel-based SC is 
the graph filtering approach [12]. As discussed in [12], graph filtering 
smooths the graph, removes noise, and iteratively incorporates graph 
similarity into features. This process can make data separable in the 
graph-filtering domain, even if they are not separable in the original 
space.

Although the SC algorithms cited above, as well as many related 
ones, exhibit excellent clustering performance on benchmark datasets, 
they involve one or more hyperparameters. Hyperparameter optimiza
tion (HPO) in these algorithms is primarily based on external cluster 
quality metrics, such as clustering error, which require a certain amount 
of labeled data. Although SC algorithms are designed to operate in a 
purely unsupervised manner, it is often assumed in practice that a held- 
out set with labeled samples is available [13]. However, real-world 
clustering tasks frequently lack label information to aid in hyper
parameter selection [14]. For instance, in the medical field, the number 
of labeled data is limited, and human annotation is both time consuming 
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and expensive, even though a large number of unlabeled data is avail
able [15]. Consequently, there is a growing interest in self-supervised 
learning algorithms [15] and self-taught algorithms [16]. They aim to 
learn useful features from a large number of unlabeled instances [15] or 
to guide themselves through learning [16]. One approach to label in
dependent learning for SC algorithms involves using internal clustering 
quality metrics [17]. However, it has been noted that existing metrics for 
clustering quality are not suitable for evaluating the internal clustering 
quality of union-of-linear-subspaces models [18]. Extensive validation 
in [17] has demonstrated that the K-subspaces (KSS) cost used in the KSS 
algorithm [19] and the Calinski-Harabasz (CS) index are effective for 
hyperparameters selection when the number of clusters is known in 
advance. These metrics require three inputs: the data, the estimated 
clusters and set of subspace dimensions. The last input might be chal
lenging to provide when working with datasets in new application 
domains.

It has been noted in [20] that the performance of machine learning 
(ML) algorithms is largely determined by the hyperparameter settings 
used. The main challenge is that hyperparameters must be tuned for 
each specific ML problem to achieve optimal performance. Conse
quently, HPO, which aims to find the best configuration for ML tasks, is a 
significant area of research topics in the ML community. The most 
commonly used strategy is search-based, where a predefined search 
space is used to find the optimal hyperparameter values for a given ML 
algorithm [21]. It is also used in SC algorithms such as [5] and [6]. This 
approach is computationally intensive and requires held-out set to 
evaluate performance for different hyperparameter values. An efficient 
alternative is meta-learning [22,23], which uses previous evaluations 
from historical datasets to predict desirable hyperparameters for new 
task. Traditionally, meta-learning has worked well for hyperparameters 
organized as vectors. However, researchers in [20] proposed to organize 
multiple hyperparameters as tensors and to formulate the interpolation 
of optimal hyperparameter values as a low-rank tensor completion 
(LRTC) problem [23]. This approach assumes that the selected perfor
mance metric is a smooth function of the hyperparameters, allowing for 
interpolation of optimal values from historic evaluations through solv
ing the LRTC problem. A critical assumption of this approach is the 
availability of previous historic evaluations. In rapidly evolving do
mains, such as various medical imaging modalities, where new data are 
generated frequently, it is often unrealistic to rely on such historical 
evaluations assumption.

To address the hyperparameter tuning challenges outlined above, we 
propose a new pseudo labels based HPO strategy for derived SC algo
rithms. This method is based on clustering quality metrics such as ac
curacy (ACC) or normalized mutual information (NMI). However, 

instead of using external (hard) labels, ACC and NMI in our approach are 
calculated from pseudo-labels generated by the SC algorithm itself. 
Similar to the grid-search approach for HPO, we define a search space 
for selected SC algorithm where the optimal hyperparameters are ex
pected to reside. However, this space can be less dense compared to an 
exhaustive greed search. In our approach, as in [20], we also assume the 
performance metric is a smooth function of the hyperparameters. 
Accordingly, we compute ACC or NMI between pseudo-labels generated 
by neighboring hyperparameter values. Based on the smoothness 
assumption, we subdivide hyperparameter intervals into smaller sec
tions, which are further split into halves or thirds, and SC algorithm 
generates pseudo-labels for these interpolated values. This process is 
repeated iteratively until a relative error criterion is met. Thus, our HPO 
approach allows SC algorithms to be tuned in a label-independent 
manner, enabling their application in new domains where labeled 
data for HPO is unavailable. Furthermore, our approach complements 
an existing avenue of research related to development of SC algorithms 
that are free of hyperparameters such as [9]. In other words, our 
approach is proposed for label-free self-guided (LFSG) hyperparameter 
tuning of existing SC algorithms that, in the spirit of self-supervised 
learning [15] and self-taught learning [16], is self-guided. Fig. 1 illus
trates our approach to HPO using as an example the least squares 
regression (LSR) SC algorithm [7]. MATLAB code of the proposed 
approach to Label-Free Self-Guided Subspace Clustering (LFSGSC) is 
available at https://github.com/ikopriva/LFSGSC.

In fields like medicine, achieving high diagnostic performance often 
requires the use of highly complex models whose decision-making 
processes are challenging to interpret and explain [24]. When de
cisions involve high stakes it becomes crucial to provide explanations for 
an algorithm’s predictions. To the best of our knowledge, SC algorithms 
also face this issue of interpretability. In response, we propose a method 
to interpret clustering results from LFSGSC algorithms by visualizing 
subspace bases estimated from the obtained clustering partitions. If 
experts judge the visualization quality to be inadequate, the initial 
hyperparameter search space can be refined, and the algorithm 
restarted.

Our contributions in this paper are summarized as follows: 

• We propose a pseudo-labels approach to HPO for existing SC algo
rithms. This approach uses clustering quality metrics such as ACC or 
NMI. However, rather than relying on actual labels, ACC or NMI are 
computed from pseudo-labels generated by the selected SC algorithm 
within a predefined search space, where the optimal hyperparameter 
values are expected to reside. Our approach assumes that ACC and 
NMI are smooth functions of hyperparameters, allowing for the 

Fig. 1. Illustration of proposed approach to label-free HPO for LSR SC algorithm [9], that depends on one hyperparameter λ, see eq. (6), on Extended YaleB dataset. 
(a) Accuracy and NMI at λ ∈

{
10− 5, 10− 4,10− 3, 10− 2, 10− 1, 0.5, 1, 5, 10

}
calculated with external (hard) labels. Both maximal accuracy and maximal NMI occur at 

λ5 = 0.1. (b) Accuracy and NMI computed between pseudo-labels generated by the same grid values of λ as in (a). Maximal accuracy occurs between λ4 = 0.01 and λ5 

= 1. Consequently, new iteration "1" begins on the interval with borders λ(1)1 = λ4 = 0.01 and λ(1)2 = λ5 = 0.1. The interval is further subdivided into thirds giving 
{0.01, 0.04, 0.07, 0.1} and the process is repeated until convergence is reached. Regarding NMI, the process is analogous to the accuracy metric.
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selection of the subintervals where ACC and NMI values are maxi
mized. Our approach allows for the re-use of existing SC algorithms 
in domains where held-out set with labeled data is unavailable.

• We propose a method to enhance interpretability of LFSGSC algo
rithms by visualizing subspace bases, estimated from the computed 
clustering partitions. If the visualization quality is deemed insuffi
cient, the initial hyperparameter search space can be adjusted, and 
the algorithm restarted.

• We evaluate the proposed pseudo-labels approach to HPO on several 
carefully selected SC algorithms and compare the resulting perfor
mance with the oracle versions of the same algorithms. Specifically, 
we demonstrate the effectiveness of our approach on linear single- 
view and multi-view SC algorithms, as well as on some nonlinear, 
kernel-based and graph-filtering-based versions. As shown, our 
approach achieves performance close to that of the oracle versions of 
the same SC algorithms.

• As side contributions, we formulate graph-filtering version of the LSR 
SC algorithm in Algorithm 1, and out-of-sample extension of kernel- 
based version of the LSR SC algorithm in section 3.4.

2. Background and related work

2.1. Subspace clustering

We assume that the columns of the matrix X ∈ RD×N represent data 
points drawn from a union of linear subspaces ∪C

i=1Si of unknown di
mensions {di = dim(Si)}

C
i=1 in RD where: 

Si =
{
xn ∈ RD×1 : xn = Aizi

n
}N

n=1 i ∈ {1, ...,C} (1) 

where C represents number of subspaces, which coincides with the 

number of clusters, 
{
Ai ∈ RD×di

}C
i=1represent bases of subspaces, 

{di≪D}C
i=1 represent dimensions of subspaces, and 

{
zi

n ∈ Rdi
}C

i=1 stand 
for representations of data samples {xn}

N
n=1. In the most general 

formulation of SC problem, the goal is to identify the number of sub
spaces, the bases of these subspaces, their dimensions, and to cluster the 
data points according to the subspaces from which they are generated 
[5]. It is frequently assumed that the number of subspaces C is known a 
priori. Moreover, SC primarily focuses on clustering [5]. Under this 
specific data model, SC algorithms aim to learn the representation ma
trix Z ∈ RN×N, from which the data affinity matrix W ∈ RN×N is derived 
as follows: 

W =
1
2
(
|Z| + |Z|T

)
(2) 

The diagonal degree matrix D, based on the affinity matrix W, is 
computed as: 

dii =
∑N

j=1
wij i ∈ {1, ..,N}. (3) 

Using Eqs. (2) and (3), the normalized graph Laplacian matrix is 
computed as [4]: 

L = I − (D)
− 1/2W(D)

− 1/2 (4) 

The spectral clustering algorithm is then applied to L to assign cluster 
labels to the data points: F ∈ NN×C

0 . Based on the self-expressive data 
model X=XZ, many SC algorithms focus on learning the representation 
matrix Z by solving the following optimization problem: 

min
Z

1
2
‖ X − XZ ‖

2
F + λf(Z) + τg(Z) s.t. diag(Z) = 0. (5) 

In Eq. (5), f and g are regularization functions imposed on Z, while λ 
and τ are regularization constants (hypeparameters). For sparse SC (SSC) 
[5], f(Z) = ‖ Z ‖1 and τ=0. For LSR SC [7], f(Z) = ‖ Z ‖F and τ=0. For 
S0L0 low-rank sparse SC (LRSSC) [8], f(Z) = ‖ Z ‖S0 and g(Z) = ‖ Z ‖0. If 
the constraint diag(Z)=0 is removed from Eq. (5), the LSR SC algorithm 
has an analytical solution: 

Z =
(
XTX + λI

)− 1XTX. (6) 

For LRR SC, SSC, and S0L0 LRSSC solutions of Eq. (5) are obtained 
iteratively using the alternating direction method of multipliers 
(ADMM) [25]. It is straightforward to derive the nonlinear kernel-based 
version of the LSR SC algorithm (6) by replacing XTX with the Gramm 
matrix K(X,X): 

Z = (K(X,X) + λI)− 1K(X,X). (7) 

Thus, the kernel version of the LSR SC also depends on one hyper
parameter, λ. However, the number of hyperparameters increases 
depending on the choice of the kernel function. For instance, if we select 
the Gaussian kernel κ

(
xi,xj

)
= exp

(
− ‖ xi − xj‖ /2σ2

)
, the variance σ2 

becomes an additional hyperparameter. Graph filtering can be an 
alternative to kernel methods for clustering data generated from mani
folds [12]. This method generates a smoothed (filtered) version of the 
feature matrix as follows: 

XT
=

(

I −
L
2

)k

XT (8) 

where k is a non-negative integer. Instead of applying the selected SC 
algorithm to the original data matrix X, it is applied to the graph-filtered 
data X. The data adjacency matrix W is typically computed from Eq. (2), 
where Z is the representation matrix estimated by a SC using self- 
representation model X¼XZ. Since the goal is to apply SC algorithm 
to X, we implement a graph-filtering version of the algorithm in an 
iterative manner [12]. This process is illustrated in Algorithm 1, which 
combines graph filtering with the LSR SC. Unlike kernel methods, it does 
not suffer from problems analogous to kernel selection.

In many real-world experiments, collected data originate from 
multiple modalities. For example, the same documents may be available 
in multiple languages [26], while different descriptors can be generated 
for the same image [27]. These scenarios lead to the multi-view SC 
(MVSC) problem [8,9]. A multi-view dataset composed of V views is 

denoted as 
{
X(v) ∈ RDv×N}V

v=1 . The objective of MVSC algorithms is to 
learn a data affinity matrix that integrates all the views and then apply 
spectral clustering to assign labels to data points. The LMVSC method 
proposed in [10] has linear complexity in terms of the number of sam
ples and solves the following optimization problem: 

min
Z(v)

∑V

v=1
‖ X(v) − A(v)(Z(v))T ‖

2
F + λ‖ Z(v) ‖

2
F s.t.0 ≤ Z(v), (Z(v))T1 = 1. (9) 

Algorithm 1 
Graph filtering least squares subspace clustering.

Inputs: Feature (data) matrix X, stopping criterion ε=10-4.
Parameters: Filter order k, λ-regularization constant
1: Initialize t=0 and X1 = X
2: repeat
3: t←t+ 1

4: Zt←
(
XT

t XT + λI
)− 1

XT
t Xt

5: Wt =
1
2

(
|Zt | + |Zt |

T
)

6: Lt = I − D− 1/2
t WtD− 1/2

t

7: XT
t+1 =

(

I −
Lt

2

)k
XT

8: until ‖ Wt − Wt− 1‖
2
F ≤ ε

Output: Graph-filtered adjacency matrix W ← Wt
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In Eq. (9), A(v) ∈ RDv×M represents the M anchors for the v-th view, 
Z(v) ∈ RN×M is the representation matrix for the v-th view, and 1 is a 
vector of ones. The view-dependent data adjacency matrices are con
structed as: 

W(v) = Ẑ
(v)
(Ẑ

(v)
)

T Ẑ
(v)

= Z(v)Σ− 1/2, Σii =
∑N

j=1
Z(v)

ji . (10) 

The final data adjacency matrix that represents all views is obtained 
as: 

W =
1
V

∑V

v=1
W(v). (11) 

The outlined LMVCS algorithm has two hyperpamerters: M and λ.
Almost all (traditional) SC algorithms follow a two-stage process to 

assign cluster labels to data points. In the first stage, spectral decom
position of data affinity matrix is performed, resulting in a continuous 
relaxation of the binary cluster indicator matrix. In the second stage, the 
k-means algorithm is used to round this continuous relaxation into a 
binary indicator matrix. However, this two-stage approach can lead to 
severe information loss and performance degradation [28]. To address 
this issue, the multi-view clustering via multiple Laplacian embeddings 
(MCMLE) method was proposed in [28]. It aims to learn a unified N × C 
binary indicator clustering matrix Y ∈ Ind that represents all views. This 
matrix is obtained by solving the following optimization problem: 

min
F(1) ,...,F(V) ,Y,λ

∑V

v=1
λ(v)

⎛

⎝tr
(

F(v)T L(v)F(v)
)
− αtr

⎛

⎝F(v)TD(v)12Y

⎞

⎠

⎞

⎠ + β‖ λ ‖
2
2,

s.t.F(v)TF(v) = I, Y ∈ Ind,
∑V

v=1
λ(v) = 1, λ(v) ≥ 0

,

(12) 

where α>0 and β>0 are penalty parameters, {L(v)}
V
v=1 are view-specific 

normalized Laplacians in the form of Eq. (4), 
{
F(v) ∈ RN×C}V

v=1 are view- 
specific partitions, and components of λ ∈ RV×1

0+ are view-specific 
weights. The MCLME algorithm introduces two hyperparameters: α 
and β.

3. The proposed method

In this section, we present our pseudo-label approach to HPO for the 
selected SC algorithm. For the sake of readability, we first describe 
methodology for SC algorithms that depend on a single hyperparameter. 
Examples of such algorithms include LSR SC (6), sparse SC [5], low-rank 
representation SC [6], LMVSC (9)-(11) [9]. We then extend our 
approach to SC algorithms that depend on two hyperparameters. Ex
amples in this category include kernel LSR SC (7), assuming a Gaussian 
kernel, S0L0 LRSSC algorithm [6], graph filtering LSR SC [12] also 
presented in Algorithm 1, and the MCLME algorithm [28].

3.1. Label-free self-guided hyperparameter optimization

Let us assume that the selected SC algorithm depends on a single 
hyperparameter λ, and that the predefined search space λ := [λ1, ...,λM], 
λ≥0, contains the optimal value λ*. We also assume the hyperparameter 
values are ordered such that λ1<λ2<...<λM. We use widely known 
clustering performance metric accuracy (ACC) and normalized mutual 
information (NMI) to measure alignment between pseudo-labels 
generated by proposed method at selected hyperparameter values. Let 
the cluster labels (pseudo-labels) generated by the SC algorithm for 
hyperparameter values λ be denoted by: 
{
y(λi) ∈ Ind := {yn(λi)}

N
n=1

}M
i=1 (13) 

To simplify notation going forward, we shall use the shorthand yi =

y(λi) and yi+1 = y(λi+1). Let h(yi,yi+1) represent either ACC(yi,yi+1) or 
NMI(yi,yi+1). By treating λi+1 as a constant, we assume that h is either a 
monotonically increasing function of λi and λi+2: 

h(yi,yi+1) ≤ h(yi+1, yi+2) (14) 

or a monotonically decreasing function of λi and λi+2: 

h(yi,yi+1) ≥ h(yi+1, yi+2). (15) 

Next, we now locate the subinterval [λi, λi+1] where h(yi,yi+1) is 
maximal, i.e.: 

i = argmax
j

h
(

yj,yj+1

)
1 ≤ j < M. (16) 

Let the iteration index be set to t=1, and denote λ(t)1 = λi and λ(t)4 =

λi+1. We now define hyperparameter search space at iteration t as: 

λ(t) :=
[
λ(t)1 λ(t)2 λ(t)3 λ(t)4

]
(17) 

where λ(t)2 =
(
2×λ(t)1 + λ(t)4

)
/3 and λ(t)3 =

(
λ(t)1 + 2 × λ(t)4

)
/3. We then 

use the selected SC algorithm to generate pseudo-labels y(t)
2 and y(t)

3 , and 
estimate h

(
y(t)

1 ,y(t)
2
)
, h

(
y(t)

2 ,y(t)
3
)

and h
(
y(t)

3 ,y(t)
4
)
. The subinterval 

[
λ(t+1)

1 ,

λ(t+1)
4

]
is refined according to the following rules: 

if h
(
y(t)

1 , y(t)
2
)
≥ h

(
y(t)

2 ,y(t)
3
)

and h
(
y(t)

1 ,y(t)
2
)
≥ h

(
y(t)

3 , y(t)
4
)

λ(t+1)
1 ←λ(t)1 , λ(t+1)

4 ← λ(t)2

elseif h
(
y(t)

2 ,y(t)
3
)
≥ h

(
y(t)

1 ,y(t)
2
)

and h
(
y(t)

2 , y(t)
3
)
≥ h

(
y(t)

3 , y(t)
4
)

λ(t+1)
1 ←λ(t)2 , λ(t+1)

4 ← λ(t)3

else
λ(t+1)

1 ←λ(t)3 , λ(t+1)
4 ← λ(t)4

end

. (18) 

We then increment the iteration index to t←t+1 and repeat the 
process. HPO stops when the relative error criterion is satisfied: 

λ(t+1)
4 − λ(t+1)

1

λ(t)1

≤ ε (19) 

where ε is a predefined constant. In our experiments, reported in section 
4, we set ε = 0.001. After the stopping criterion is met, the optimal 
hypeparameter value is obatined as: 

λ∗ =
λ(t+1)

4 + λ(t+1)
1

2
(20) 

The experiments presented in section 4 brought to light an important 
issue related to the selection of the hyperparameter space λ := [λ1,...,λM]. 
If two neighboring hyperparameters λi and λi+1 are set "too close" to each 
other, the corresponding metric h(yi,yi+1) may exhibit a high value. 
However, the actual performance based on the true labels, h(yi,y∗), can 
be quite poor. This scenario is illustrated in Fig. 2, where both ACC and 
NMI, as functions of λ := [λ1, ...,λM], are estimated by the oracle version 
of the LSR SC algorithm (left) and pseudo-labels based version of the LSR 
SC algorithm (right). We summarize our approach to HPO in SC in Al
gorithm 2.

3.2. Extension of proposed approach to HPO for SC algorithm with two 
hyperparameters

We now extend our approach to HPO for SC algorithms with two 
hyperparameters, such as kernel LSR SC (7) (assuming Gaussian kernel), 
S0L0 LRSSC algorithm [6], graph filtering LSR SC [12] (also presented in 
Algorithm 1), and the MCLME algorithm [28]. Let us assume that the 
hyperparameter space is defined by λ := {λ1, ..., λM} and τ := {τ1,...,τL}. 
First, we preset the hyperparameter τ to a value τ = τL/2 (other options 
may also be considered). We then apply Algorithm 1 with the predefined 
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hyperparameter space λ to compute λ∗. Afterward, we fix λ at the ob
tained value λ = λ∗, and apply Algorithm 1 with the predefined hyper
parameter space τ to compute τ∗. Described approach is based on 
implicit assumptions on hτL/2

(
yi,yi+1

)
and hλ∗

(
yi,yi+1

)
, analogous to Eqs. 

(16) and (17). Specifically, we assume that hτL/2

(
yi,yi+1

)
is a monotonic 

function of τi and τi+1, and hλ∗
(
yi, yi+1

)
is a monotonic function of λi and 

λi+1. The subscriptsτL/2 and superscript λ∗ indicate that the performance 
indices are computed with these parameters. Described method for HPO 
of the SC algorithms with two hypeparameters can be straightforwardly 
extended to HPO of the SC algorithms that depend on three or more 
hyperparameters.

3.3. Extension of proposed approach to HPO of SC algorithm for out-of- 
sample data

Many SC algorithms are unable to cluster out-of-sample (also known 
as unseen or test) data. In other words, to cluster an unseen data point, 
the algorithm must be re-run again on the entire data, including the new 
data point. This requirement significantly reduces the scalability and 
applicability of these algorithms in large-scale or online clustering 
problems. Here, we address the problem of clustering out-of-sample data 
by LFSG SC algorithm by formulating it as a minimization problem 

based on the point-to-a-subspace distance criterion. Using the partitions 
obtained by the selected algorithm on the in-sample dataset, we estimate 
the subspace bases [13]: 

⎧
⎨

⎩
Xc←Xc −

⎡

⎢
⎣xc... xc⏟̅̅̅⏞⏞̅̅̅⏟

Nc times

⎤

⎥
⎦

⎫
⎬

⎭

C

c=1

(21) 

where xc = 1
Nc

∑Nc
n=1Xc(n), 

⋃C
c=1Xc = X, 

∑C
c=1Nc = N, and C is the 

number of clusters. From 
{
Xc = UcΣc(Vc)

T}C
c=1we estimate the ortho

normal bases by extracting the first d left singular vectors of each 

partition, i.e. 
{
Uc ∈ RD×d}C

c=1 [13]. For a test data point x, we compute 
the point-to-a-subspace distances 

{
dc = ‖ x̃c − Uc(Uc)

Tx̃c‖2
}

as follows: 

c = argmindc
c∈{1,...,C}

(22) 

where x̃c = x − xc. We assign the label {c}C
c=1 to the test data point: 

[π(x)]c =
{

1, if c = argmin
c∈{1,...,C}

dc

0, otherwise.
. (23) 

3.4. Formulation of proposed approach to HPO for out-of-sample 
extension of the kernel LSR SC algorithm

To apply the point-to-a-subspace distance criterion for clustering 
out-of-sample data in reproducible kernel Hilbert space (RKHS), the 
approach presented in section 3.3 has to be slightly adapted. Due to the 
space limitation, we provide full derivation of proposed approach to 
HPO for out-of-sample extension of the kernel LSR SC algorithm in the 
supplement.

3.5. Interpretable LFSG SC

As with many other complex prediction models, SC algorithms 
generally suffer from the issue of interpretability. In our approach to 
LFSG SC, we propose a method to interpret or explain the results ob
tained by the LFSG SC algorithm. Notably, this proposed approach is 
also applicable to the oracle versions of the corresponding SC algorithm. 
Our method relies on the visualization of subspace bases estimated from 
the in-sample data, using the clustering partitions produced by the 
selected SC algorithm. Let the SVD of each in-sample cluster partition be 
represented as: 

Fig. 2. Illustration of possible problem in proposed approach to label-free HPO for LSR SC algorithm [7], on COIL20 dataset. Hyperparameter grid values λ1 = 10-7 

and λ2 = 10-6 are set too close. (a) Accuracy and NMI at λ :=
{
10− 7, 10− 6, 10− 5, 10− 4,10− 3, 10− 2,10− 1, 1,10

}
. The value 0.6519 of maximal accuracy computed with 

external (hard) labels occurs at λ7 = 0.1. As for NMI, the maximal value 0.7733 occurs at λ9 = 10. (b) Accuracy and NMI computed between pseudo-labels generated 
by the same grid values of λ as previously. Maximal values occur between pseudo-labels generated by λ2 = 10-6 and λ3 = 10-5. Consequently, new iteration 1 begins 
on the interval with bordersλ(1)1 = λ2 = 10− 6 and λ(1)2 = λ3 = 10− 5. That is incorrect.

Algorithm 2 
Proposed approach to a HPO for a single hyperparameter SC algorithm (e.g., LSR 
SC Eq. (6), [7]).

Input: Feature (data) matrix X, initial hyperparameter space λ := [λ1, ...,λM ], stopping 
criterion ε = 0.001.

1: Locate the subinterval [λi, λi+1 ] where h
(
yi,yi+1

)
is maximal, i.e.:

i = argmax
j

h
(

yj,yj+1

)
1 ≤ j < M (18).

2: Set t=1, and denote λ(t)1 = λi, λ(t)4 = λi+1, y(t)
1 = yi and y(t)

4 = yi+1.

3: Set λ(t)2 =
(
2×λ(t)1 + λ(t)4

)
/3 and λ(t)3 =

(
λ(t)1 + 2 × λ(t)4

)
/3.

4: Use the selected SC algorithm to generate pseudo labels y(t)
2 and y(t)

3 .

5: Estimate h
(
y(t)

1 ,y(t)
2
)
, h

(
y(t)

2 ,y(t)
3
)

and h
(
y(t)

3 ,y(t)
4
)
.

6: Use Eq. (18) to select borders of the next subinterval λ(t+1)
1 and λ(t+1)

4 .
7: If the relative error criterion (13) is met, proceed to step 13.
8: Compute λ(t+1)

2 =
(
2 × λ(t+1)

1 + λt+1
4

)
/3, and λ(t+1)

3 =
(
λ(t+1)

1 + 2 × λt+1
4

)
/3.

9: Use selected SC algorithm to generate pseudo-labels y(t+1)
1 , y(t+1)

2 , y(t+1)
3 and y(t+1)

4 .

10: Estimate h
(
y(t+1)

1 ,y(t+1)
2

)
, h

(
y(t+1)

2 ,y(t+1)
3

)
and h

(
y(t+1)

3 ,y(t+1)
4

)
.

11: Increment t←t+1.
12: Return to step 6.
13: Compute optimal hyperparameter value λ* using Eq. (20).
Output: The optimal hyperparameter value λ*.
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{
Xc = UcΣc(Vc)

T}C
c=1. (24) 

We aim to visualize each partition. To achieve this, we compute the 
representative of each cluster as: 
{

ac ∈ RD×1 =
∑d

j=1
Uc(:, j)Σc(j, j)

}C

c=1

(25) 

In Eq. (25), d represents the subspace dimension, which is known a 
priori. For example, face images of each subject in the EYaleB dataset lie 
approximately in a subspace of d = 9 dimensions [29], while hand
written digits such as those in the MNIST dataset, appriximately lie in a 
subspace of d = 12 dimensions [30]. Since SC algorithms typically 
vectorize image data samples, we need to matricize the representative 
vectors to recover their original 2D form. Let us assume the dimensions 
of the imaging data are Dx and Dy, where D=Dx × Dy. Using MATLAB 
notation, we reconstruct the images of the cluster representatives as: 
{
Ac ∈ RDx×Dy = reshape

(
ac,Dx,Dy

)}C
c=1. (26) 

We demonstrate the proposed visualization method on the USPS 
dataset [31], which contains images of handwritten numerals organized 
into C=10 clusters. Each grayscale image has dimensions Dx = Dy = 16. 
Fig. 3 shows the visualization results for correctly labeled data, as well as 
for data labeled by both the oracle and LFSG versions of the S0L0 LRSSC 
algorithm [6]. Despite the inherent rotational indeterminacy of the 
proposed visualization, the numerals corresponding to each group are 
recognizable, allowing us to explain the decisions of both the oracle 
LFGS versions of the S0L0 LRSSC algorithm. The LFSGSC method can, at 
a conceptual level, be compared with the LIME algorithm [32]. LIME’s 
core idea is to perturb the features and track any changes in the model’s 
prediction. This helps to identify which features significantly influence 
the model’s decision-making process. Similarly, LFSGSC generates 
pseudolabels and visualize the subspace using the resulting clustering 
partitions. This allows users to assess importance and influence of spe
cific combination of hyperparameters.

4. Experiments

4.1. Single-view SC algorithms

We evaluate the proposed approach to HPO on LSR SC algorithm (6), 
[7], graph-filtering version of LSR SC algorithm in Algorithm 1, kernel 
LSR SC algorithm (7), [7], sparse SC (SSC) algorithm [5], and S0L0 low 
rank sparse SC (LRSSC) algorithm [6]. For this evaluation we use six 
datasets: MNIST [33], USPS [31], EYaleB [34], ORL [35], COIL20, and 
COIL100 [36]. For each algorithm, we compute accuracy and normal
ized mutual information (NMI) to select the optimal hyperparameter 
value over the specified search space. This is done using both the true 
labels (the oracle) and pseudo-labels, following the label-free 

self-guided (LFSG) approach. For clarity, we define the oracle version of 
a given algorithm as the clustering performance achieved when its 
hyperparameters are optimized using the true ground-truth labels. After 
determining the optimal hypeparameter value, we compute accuracy, 
NMI and F1-score using the true labels to assess clustering performance. 
To evaluate the robustness of the algorithms, we randomly split each 
dataset into in-sample and out-of-sample partitions and repeat the 
clustering process 25 times. This allows us to statistically compare the 
oracle and LFSG versions of each selected SC algorithm using the Wil
coxon rank-sum test implemented by MATLAB command ranksum. The 
null hypothesis of the test assumes that the data come from continuous 
distributions with equal medians, at a 5 % significance level. A p-value 
greater than 0.05 indicates acception of the null hypothesis. The main 
information on datasets used in the experiments are summarized in 
Table 1. Due to space limitation we present in the main paper results 
after HPO, using the accuracy metric in a form of bar diagrams. Full 
numerical results, including information about statistical significance, 
for both accuracy and NMI metrics are presented in the supplement.

4.1.1. Least squares regression SC algorithm
Fig. 4 presents the clustering performance of the oracle and LFSG 

versions of the LSR SC algorithm for hyperparameter selection based on 
ACC criteria. Table S1 in supplement gives complete numerical results 
for hyperparameter selection based on ACC and NMI criteria including 
statistical significance analysis. The p-values are provided at the 95 % 
confidence interval for instances when the statistical difference between 
the oracle and LFSG versions was insignificant, i.e., when the null hy
pothesis (equal medians) is accepted. These findings suggest that the 
proposed LFSG LSR SC algorithm performs comparably to its oracle 
counterpart. For further details on the hyperparameter λ search space 
for each dataset, we direct interested readers to the publicly available 
code. As shown in Fig. 4, the LFSG version on in-sample data typically 
has up to 4 % lower clustering performance to the oracle version, while 
on out-of-sample data, the performance difference is typically less than 1 
%. This suggests that the partitions generated by the LFSG version on in- 
sample data are sufficiently robust to estimate accurate subspace bases 
for clustering out-of-sample (test) data.

4.1.2. Kernel least squares regression SC algorithm
For the kernel LSR SC algorithm (7), we selected the Gaussian kernel, 

introducing variance σ2 as an additional hyperparameter alongside λ. 
Fig. 5 presents the clustering performance of the oracle and LFSG ver
sions of the kernel LSR SC algorithm for hyperparameter selection based 
on ACC criteria. Table S2 in supplement gives complete numerical re
sults for hyperparameter selection based on ACC and NMI criteria 
including statistical significance analysis. As observed in Table S2, the 
oracle version typically outperforms the LFSG version by 3-4 %. How
ever, in several cases, the performance difference on in-sample data is 
statistically insignificant. Notably, for out-of-sample data, the LFSG 

Fig. 3. Visualization of subspace bases representing the numerals in the USPS dataset [31], from 0 to 9 in order. The bases are estimated from 50 randomly selected 
data samples per cluster (numeral). Clustering is performed using the S0L0 LRSSC algorithm [6]. From top to bottom: partitions are composed of (1) correctly labeled 
data, (2) data labeled by the oracle version of the S0L0 LRSSC algorithm, (3) data labeled by the LFSG version of the S0L0 LRSSC algorithm. The clustering accuracy 
of both versions is approximately 85 %.
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version achieves significantly better performance on all datasets. This 
suggests that the partitions generated by the LFSG version on in-sample 
data are more robust for estimating accurate subspace bases for clus
tering out-of-sample (test) data. It can be argued that the oracle version 
could also produce more robust partitions, if a denser hyperparameter 
search space were employed. However, this would significantly increase 
computational complexity.

4.1.3. Graph filtering least squares regression SC algorithm
As shown in Algorithm 1, the graph-filtering LSR SC algorithm in

troduces an additional hyperparameter, the filter order k, alongside the 
regularization constant λ. Unlike the LSR SC and kernel LSR SC algo
rithms, we have not yet formulated an out-of-sample extension for the 
graph-filtering LSR SC algorithm. Therefore, all results presented in 
Fig. 6 and Table S3 in the supplement are based on in-sample-data. As 
seen in Table S3, the performance difference between the oracle and 
LFSG versions is typically less than 4 %, and sometimes below 2 %. For 
the ORL, COIL20, and partially USPS datasets, there is no statistically 
significant difference in performance between the two versions. In 
several instances, there is also no statistically significant difference in 
hyperparameter estimates obtained by the oracle and LFSG versions.

4.1.4. Sparse SC algorithm
In the implementation of the sparse SC algorithm, we distinguish 

between two cases: when the error/noise term is Gaussian and when it is 
sparse, see [5]. The first case of the SSC algorithm is derived from Eq. (5)
by setting f(Z) = ‖ Z ‖1 and τ=0, requiring the coefficient representation 
matrix Z to be sparse. The second case, robust to outliers, is defined by: 

min
Z

‖ X − XZ ‖1 + λ‖ Z ‖1 s.t. diag(Z) = 0. (27) 

Eq. (27), represents robust version of the SSC algorithm, used to 
cluster the extended YaleB dataset. All other datasets were clustered 
using the non-robust version of the SSC algorithm. The SSC algorithm 
has one hyperparameter, λ. In its implementation, as outlined in [5], a 
scaled regularization constant is introduced α = λ /μ. For the non-robust 
version,μ Δ

=
min

i
max

j∕=i

⃒
⃒xT

i xj
⃒
⃒, i, j = 1, N, and for the robust version, 

μ Δ
=

min
i

max
j∕=i

‖ xj‖1, i, j = 1, N, giving us λ = α× μ. When defining the 

search space, we preset α ∈ N+. As seen in Fig. 7 and Table S4 in the 

supplement, for ORL, EYaleB, MNIST, USPS, and COIL20 the perfor
mance of the oracle version on in-sample data is mostly up to 6 % better 
than the LFSG version. For COIL100 dataset, the LFSG version yields up 
to 2 % better performance. On out-of-sample data, the difference in 
performance is in many cases statistically insignificant.

4.1.5. Low-rank sparse S0/ℓ0 SC algorithm
The S0L0 LRSSC algorithm [6] is derived from Eq. (5) by setting 

f(Z) = ‖ Z ‖S0 and g(Z) = ‖ Z ‖0. In our implementation, as outlined in 
Algorithm 2 of [6], we further set λ+τ=1, meaning τ=1-λ. The second 
hyperparameter, α>0, is the penalty constant in the ADMM-based 
implementation of the S0L0 LRSSC algorithm. As shown in Fig. 8 and 
Table S5 in supplement, for the ORL dataset, the clustering performance 
of the LFSG version is up to 15 % lower than the oracle version, both on 
in-sample and out-of-sample data. On other datasets, the LFSG version’s 
performance is typically up to 6 % lower than that of the oracle version, 
with similar results observed for out-of-sample data.

4.2. Multi-view SC algorithm

We also evaluated the performance of the proposed HPO approach 
on the multi-view LMVSC algorithm [9] and multi-view MLME algo
rithm [28]. As there are no out-of-sample extensions for the LMVSC and 
MLME algorithms, the results presented in Tables S7 and S8 pertain only 
to in-sample data. We compare clustering performance of MLME and 
LMVSC algorithms with fast parameter free multi-view subspace clus
tering algorithm with consensus anchor guidance (FPMVS-CAG), [10], 
on three multi-view datasets: Handwritten-numerals, BBC, and 
Caltech101-20. They are available at links provided in sections 4.2.1 and 
4.2.2. Our motivation is to demonstrate that proposed LFSG version of 
MLME and LMVSC algorithms outperforms the parameter-free 
FPMVS-CAG which justifies application of proposed method to the 
existing SC algorithms. Performance metrics were calculated using 
in-sample data from 70 % randomly selected samples per cluster. Main 
information on used multi-view datasets are summarized in Table 2. 
Results obtained by FPMVS-CAG algorithm are given in Table 3.

4.2.1. Multi-view LMVSC algorithm
The LMVSC algorithm, formulated in Eq. (9), introduces two 

hyperparameters: the number of anchors M and the regularization 
constant α. The MATLAB code for the original version of this algorithm, 
provided by the authors, is available at https://github.com/scka 
ngz/LMVSC. Fig. 9 and Table S7 in supplement report results on 25 
runs, using data randomly selected from the 70 % of the total number of 
samples per cluster. As shown in [10], the optimal hyperparameter 
values for the Handwritten_numerals dataset are M=10 and α=10-3. In 
comparison with [10], we slightly modified the search space, M∈{10, 
15, 25, 50} and α∈{10-4 ,10-3, 10-2, 10-1, 1, 10}, which improved the 
oracle’s performance compared to the original results in [11]. As shown 
in Table S7, the oracle version estimated the optimal hyperparameter 
values M=25 and α=10-4 using either ACC or NMI as the selection 

Table 1 
Main information on datasets used in the experiments with single-view SC 
algorithms.

Dataset #Sample #Feature #Cluster #in-sample/out-of-sample per 
group

MNIST 10000 28 × 28 10 50/50
USPS 7291 16 × 16 10 50/50
EYaleB 2432 48 × 42 38 43/21
ORL 400 32 × 32 40 7/3
COIL20 1440 32 × 32 20 26/26
COIL100 7200 32 × 32 100 26/26

Fig. 4. The clustering performance of the oracle and LFSG versions of the LSR SC algorithm on the in-sample data (left) and out-of-sample data (right).
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metric. The LFSG version estimated hyperparameter values with a slight 
displacement relative to the oracle values. As can be seen in Table S7, 
the LFSG version’s performance is typically up to 7 % lower than that of 
the oracle version. In comparison with parameter-free FPMVS-CAG 

algorithms, the LFSG LMVSC algorithm achieves better results on 
Handwritten numerals and BBC datasets, and worse results on 
Caltech101-20 dataset. Arguably, the last result could be improved by 
evaluating the quality of clustering partitions visualization but that 
would increase computational complexity of LFSG LMVSC method.

4.2.2. Multi-view MLME algorithm
The MLME algorithm, formulated in Eq. (12), introduces two 

hyperparameters: α and β. The MATLAB code for the original version of 
this algorithm, provided by the authors, is available at https://github. 
com/Ekin102003/MCMLE. We compared the oracle and LFSG ver
sions using the BBC dataset and Handwritten numerals dataset. Fig. 10
and Table S8 in supplement report results after 25 runs using data 
randomly selected from the 70 % of the total number of samples per 
cluster. Researchers in [28] shown that the optimal values of the 
hyperparameters for the BBC dataset are β≥10 and α∈ [0.0005, 0.01]. 
As shown in Table S8, the oracle version correctly estimated the 
hyperparameters using either ACC or NMI as the selection metric. The 
LFSG version also estimated hyperparameter values within the sug
gested range. The same observation applies to results obtained on the 70 
% randomly sampled data, although the mean values deviated from 
those values obtained on the full dataset.

Fig. 5. The clustering performance of the oracle and LFSG versions of the kernel LSR SC algorithm on the in-sample data (left) and out-of-sample data (right).

Fig. 6. The clustering performance of the oracle and LFSG versions of the graph 
filtering LSR SC algorithm.

Fig. 7. The clustering performance of the oracle and LFSG versions of the SSC algorithm on the in-sample (left) and out-of-sample (right) data.

Fig. 8. The clustering performance of the oracle and LFSG versions of the S0L0 LRSSC algorithm on the in-sample (left) and out-of-sample (right) data.
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4.2.3. Fast parameter-free multi-view subspace clustering with consensus 
anchor guidance

Researchers in [9] proposed the fast parameter-free multi-view 
subspace clustering with consensus anchor guidance (FPMVS-CAG) 
method, with the MATAB code available at: https://github.com/wang 
siwei2010/FPMVS-CAG. In this algorithm anchor selection and sub
space graph construction are conducted into a unified optimization 
framework. Importantly, the algorithm is proven to have linear time 
complexity with respect to the number of samples. Even more impor
tant, the algorithm can learn the anchor-graph structure without 
hyperparameters.

5. Conclusion

Performance of many subspace clustering (SC) algorithms heavily 
depends on the availability of held-out datasets for hyperparameters 
tuning. To address this limitation, we propose a label-independent 
approach to HPO optimization in existing SC methods. This approach 
leverages clustering quality metrics such as ACC or NMI, computed in a 
self-guided manner from pseudo-labels generated by the clustering al
gorithm over a predefined grid. Additionally, we advocate for visual
izing the clustering partitions produced by the proposed method to 
enable domain experts to asses clustering quality and, if necessary, guide 
the refinement of the hyperparameters search space. These aspects 
represent strengths of our HPO method. One limitation of proposed 
approach lies in its reliance on the initial assessment of the hyper
parameter search space. If the initial hyperparameters are set "too 
closely" together, the method may be misled. While the visualization 
feature empowers domain experts to refine the hyperparameters search 

space, it requires their involvement, thereby increasing the method’s 
overall computational complexity. Another potential weakness is the 
method’s dependence on the smoothness assumption of clustering 
quality metrics. Although sensitivity analyses in several studies supports 
the validity of this assumption, it may not hold for a certain combination 
of SC algorithms and datasets. In such cases, proposed method may not 
perform satisfactorily. To enhance robustness against suboptimal initial 
search space configurations, we aim to evaluate the quality of the 
pseudo-labels generated by the method. One potential solution involves 
using non-parametric clustering algorithms, such as k-means, to produce 
the "target" pseudo-labels. While not highly accurate, they can reflect the 
underlying partition structure of the dataset, enabling our LFSG SC 
method to identify initial points in the hyperparameter search space that 
best align with the "target" labels. Another promising direction is to 
explore metrics related to intra-cluster compactness and inter-cluster 
separability to select partition corresponding to optimal hyper
parameter values. For cases where the data distribution may violate the 
smoothness assumption, we consider methods for integration of 
crowdsource labels. This approach treats each set of pseudo-labels 
generated by an SC algorithm under a specific hyperparameter setting, 
as an annotation. Methods such as [37] can then estimate the reliability 
of each "annotator", enabling weighted majority voting to infer a 
consensus label estimate. Due to space limitation, we did not validate 
our approach on deep subspace clustering (DSC) methods such as [38,
39]. It is, however, clear that procedure described in section 3.2 can 
perform tuning of the two hyperparameters of the DSC [38,39]. We 
anticipate that the LFSG SC method has significant potential to repur
pose existing SC algorithms for new domains with unlabeled data, 
effectively addressing the challenge of label dependency.
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Table 2 
Main information on datasets used in the experiments with multi-view SC 
algorithms.

Dataset #Sample #Views #Cluster

Handwritten numerals 2000 6 10
BBC 685 4 5
Caltech101-20 2386 6 20

Table 3 
The clustering performance of the FPMVS-CAG algorithm. Performance metrics 
were calculated using in-sample data from 70 % randomly selected samples per 
cluster.

Dataset ACC [%] NMI [%] F1 score [%]

Handwritten_numerals 82.25 ± 0 79.30 ± 0 75.60 ± 0
BBC 32.26 ± 0 2.97 ± 0 27.59 ± 0
Caltech101-20 65.47 ± 0 63.26 ± 0 69.05 ± 0

Fig. 9. The clustering performance of the oracle and LFSG versions of the 
LMVSC algorithm.

Fig. 10. The clustering performance of the oracle and LFSG versions of the 
MLME SC algorithm.
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