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ARTICLE INFO ABSTRACT

Majority subspace clustering (SC) algorithms depend on one or more hyperparameters that need to be tuned for
the SC algorithms to achieve high clustering performance. This is often performed using grid-search, assuming
that held out set is available. In some domains, such as medicine, this assumption does not hold true in many
cases. To address this problem, we propose an approach to label-independent hyperparameter optimization by
applying the SC algorithm to the data and use the resulting cluster assignments as pseudo-labels to compute
clustering quality metrics (e.g., accuracy (ACC) or normalized mutual information (NMI)) across a predefined
hyperparameter grid. Assuming that ACC (or NMI) is a smooth function of hyperparameter values, it is possible
to select subintervals of hyperparameters, which are then iteratively further split into halves or thirds until a
relative error criterion is satisfied. In principle, the hyperparameters of any SC algorithm can be tuned using the
proposed method. We demonstrate this approach on five single-view SC algorithms and two multi-view SC al-
gorithms, comparing the achieved performance with their oracle versions across six datasets for single-view
algorithms and three datasets for multi-view algorithms. The proposed method typically achieves clustering
performance that is up to 7 % lower than that of the oracle versions. We also enhance the interpretability of the
proposed method by visualizing subspace bases, estimated from the computed clustering partitions. This aids in
the initial selection of the hyperparameter search space.

Dataset link: https://github.
com/ikopriva/LFSGSC
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1. Introduction

Clustering is a fundamental problem in unsupervised learning. It has
numerous applications, including medical image analysis [1], single-cell
transcriptomics [2], pattern recognition and speaker identification [3],
among others. Due to the complex shapes of samples spaces,
distance-based clustering algorithms often struggle to cluster data
accurately in the original ambient domain. However, if a high-quality
data-affinity matrix can be estimated, spectral methods can achieve
high clustering performance [4]. Subspace clustering (SC) algorithms
focus on learning a data affinity matrix under the assumption that the
data are generated by a union-of-linear subspaces [5]. Representative SC
algorithms are based on self-expressive model, where sparsity constraint
is imposed on representation matrix in [5], and combination of low-rank
and sparsity constraint in [6]. The least squares regression (LSR) SC
algorithm in [7] yields analytical solution for the representation matrix.
Because contemporary data are often recorded across multiple modal-
ities or represented by various multiple features, multi-view extensions
of SC algorithms have also been proposed in [8]. In particular, to avoid
problems associated with hyperparameter tuning, researchers in [9]
proposed a parameter-free multi-view SC algorithm. To address the
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large-scale SC problem, researchers in [10] developed multi-view al-
gorithm with linear complexity. However, real world data do not always
originate from linear subspaces. To address this issue, SC algorithms can
be formulated in a Reproducing Kernel Hilbert Space (RKHS), also
known as the feature space, [11]. An alternative to kernel-based SC is
the graph filtering approach [12]. As discussed in [12], graph filtering
smooths the graph, removes noise, and iteratively incorporates graph
similarity into features. This process can make data separable in the
graph-filtering domain, even if they are not separable in the original
space.

Although the SC algorithms cited above, as well as many related
ones, exhibit excellent clustering performance on benchmark datasets,
they involve one or more hyperparameters. Hyperparameter optimiza-
tion (HPO) in these algorithms is primarily based on external cluster
quality metrics, such as clustering error, which require a certain amount
of labeled data. Although SC algorithms are designed to operate in a
purely unsupervised manner, it is often assumed in practice that a held-
out set with labeled samples is available [13]. However, real-world
clustering tasks frequently lack label information to aid in hyper-
parameter selection [14]. For instance, in the medical field, the number
of labeled data is limited, and human annotation is both time consuming
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and expensive, even though a large number of unlabeled data is avail-
able [15]. Consequently, there is a growing interest in self-supervised
learning algorithms [15] and self-taught algorithms [16]. They aim to
learn useful features from a large number of unlabeled instances [15] or
to guide themselves through learning [16]. One approach to label in-
dependent learning for SC algorithms involves using internal clustering
quality metrics [17]. However, it has been noted that existing metrics for
clustering quality are not suitable for evaluating the internal clustering
quality of union-of-linear-subspaces models [18]. Extensive validation
in [17] has demonstrated that the K-subspaces (KSS) cost used in the KSS
algorithm [19] and the Calinski-Harabasz (CS) index are effective for
hyperparameters selection when the number of clusters is known in
advance. These metrics require three inputs: the data, the estimated
clusters and set of subspace dimensions. The last input might be chal-
lenging to provide when working with datasets in new application
domains.

It has been noted in [20] that the performance of machine learning
(ML) algorithms is largely determined by the hyperparameter settings
used. The main challenge is that hyperparameters must be tuned for
each specific ML problem to achieve optimal performance. Conse-
quently, HPO, which aims to find the best configuration for ML tasks, is a
significant area of research topics in the ML community. The most
commonly used strategy is search-based, where a predefined search
space is used to find the optimal hyperparameter values for a given ML
algorithm [21]. It is also used in SC algorithms such as [5] and [6]. This
approach is computationally intensive and requires held-out set to
evaluate performance for different hyperparameter values. An efficient
alternative is meta-learning [22,23], which uses previous evaluations
from historical datasets to predict desirable hyperparameters for new
task. Traditionally, meta-learning has worked well for hyperparameters
organized as vectors. However, researchers in [20] proposed to organize
multiple hyperparameters as tensors and to formulate the interpolation
of optimal hyperparameter values as a low-rank tensor completion
(LRTC) problem [23]. This approach assumes that the selected perfor-
mance metric is a smooth function of the hyperparameters, allowing for
interpolation of optimal values from historic evaluations through solv-
ing the LRTC problem. A critical assumption of this approach is the
availability of previous historic evaluations. In rapidly evolving do-
mains, such as various medical imaging modalities, where new data are
generated frequently, it is often unrealistic to rely on such historical
evaluations assumption.

To address the hyperparameter tuning challenges outlined above, we
propose a new pseudo labels based HPO strategy for derived SC algo-
rithms. This method is based on clustering quality metrics such as ac-
curacy (ACC) or normalized mutual information (NMI). However,
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instead of using external (hard) labels, ACC and NMI in our approach are
calculated from pseudo-labels generated by the SC algorithm itself.
Similar to the grid-search approach for HPO, we define a search space
for selected SC algorithm where the optimal hyperparameters are ex-
pected to reside. However, this space can be less dense compared to an
exhaustive greed search. In our approach, as in [20], we also assume the
performance metric is a smooth function of the hyperparameters.
Accordingly, we compute ACC or NMI between pseudo-labels generated
by neighboring hyperparameter values. Based on the smoothness
assumption, we subdivide hyperparameter intervals into smaller sec-
tions, which are further split into halves or thirds, and SC algorithm
generates pseudo-labels for these interpolated values. This process is
repeated iteratively until a relative error criterion is met. Thus, our HPO
approach allows SC algorithms to be tuned in a label-independent
manner, enabling their application in new domains where labeled
data for HPO is unavailable. Furthermore, our approach complements
an existing avenue of research related to development of SC algorithms
that are free of hyperparameters such as [9]. In other words, our
approach is proposed for label-free self-guided (LFSG) hyperparameter
tuning of existing SC algorithms that, in the spirit of self-supervised
learning [15] and self-taught learning [16], is self-guided. Fig. 1 illus-
trates our approach to HPO using as an example the least squares
regression (LSR) SC algorithm [7]. MATLAB code of the proposed
approach to Label-Free Self-Guided Subspace Clustering (LFSGSC) is
available at https://github.com/ikopriva/LFSGSC.

In fields like medicine, achieving high diagnostic performance often
requires the use of highly complex models whose decision-making
processes are challenging to interpret and explain [24]. When de-
cisions involve high stakes it becomes crucial to provide explanations for
an algorithm’s predictions. To the best of our knowledge, SC algorithms
also face this issue of interpretability. In response, we propose a method
to interpret clustering results from LFSGSC algorithms by visualizing
subspace bases estimated from the obtained clustering partitions. If
experts judge the visualization quality to be inadequate, the initial
hyperparameter search space can be refined, and the algorithm
restarted.

Our contributions in this paper are summarized as follows:

We propose a pseudo-labels approach to HPO for existing SC algo-
rithms. This approach uses clustering quality metrics such as ACC or
NMI. However, rather than relying on actual labels, ACC or NMI are
computed from pseudo-labels generated by the selected SC algorithm
within a predefined search space, where the optimal hyperparameter
values are expected to reside. Our approach assumes that ACC and
NMI are smooth functions of hyperparameters, allowing for the
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Fig. 1. Illustration of proposed approach to label-free HPO for LSR SC algorithm [9], that depends on one hyperparameter A, see eq. (6), on Extended YaleB dataset.
(a) Accuracy and NMI at A €{1075,107%,1073, 1072, 10", 0.5, 1, 5, 10} calculated with external (hard) labels. Both maximal accuracy and maximal NMI occur at
As = 0.1. (b) Accuracy and NMI computed between pseudo-labels generated by the same grid values of A as in (a). Maximal accuracy occurs between A4 = 0.01 and As

= 1. Consequently, new iteration "1" begins on the interval with borders Agl) =14 = 0.01 and /1(21) = 45 = 0.1. The interval is further subdivided into thirds giving
{0.01, 0.04, 0.07, 0.1} and the process is repeated until convergence is reached. Regarding NMI, the process is analogous to the accuracy metric.
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selection of the subintervals where ACC and NMI values are maxi-
mized. Our approach allows for the re-use of existing SC algorithms
in domains where held-out set with labeled data is unavailable.

We propose a method to enhance interpretability of LFSGSC algo-
rithms by visualizing subspace bases, estimated from the computed
clustering partitions. If the visualization quality is deemed insuffi-
cient, the initial hyperparameter search space can be adjusted, and
the algorithm restarted.

We evaluate the proposed pseudo-labels approach to HPO on several
carefully selected SC algorithms and compare the resulting perfor-
mance with the oracle versions of the same algorithms. Specifically,
we demonstrate the effectiveness of our approach on linear single-
view and multi-view SC algorithms, as well as on some nonlinear,
kernel-based and graph-filtering-based versions. As shown, our
approach achieves performance close to that of the oracle versions of
the same SC algorithms.

As side contributions, we formulate graph-filtering version of the LSR
SC algorithm in Algorithm 1, and out-of-sample extension of kernel-
based version of the LSR SC algorithm in section 3.4.

2. Background and related work
2.1. Subspace clustering

We assume that the columns of the matrix X € R”*N represent data
points drawn from a union of linear subspaces US | S; of unknown di-
mensions {d; = dim(S;)}<, in R where:

N
n=1

Si={x e R”': x, =Az,} | i€ {l,..,C} (€]

where C represents number of subspaces, which coincides with the
1 C
number of clusters, {A; € RP*% }._,represent bases of subspaces,
. . i N

{d;<D}{, represent dimensions of subspaces, and {zi € Rd'}i:l stand
for representations of data samples {x,}) ,. In the most general
formulation of SC problem, the goal is to identify the number of sub-
spaces, the bases of these subspaces, their dimensions, and to cluster the
data points according to the subspaces from which they are generated
[5]. It is frequently assumed that the number of subspaces C is known a
priori. Moreover, SC primarily focuses on clustering [5]. Under this
specific data model, SC algorithms aim to learn the representation ma-
trix Z € R¥*N, from which the data affinity matrix W € R¥¥ is derived
as follows:

1
W= (1Z+ 1z|") 2

The diagonal degree matrix D, based on the affinity matrix W, is
computed as:

Algorithm 1
Graph filtering least squares subspace clustering.

Inputs: Feature (data) matrix X, stopping criterion e=10*.

Parameters: Filter order k, A-regularization constant

1: Initialize t=0 and X; = X

2: repeat

3 tet+1
1 11—

4 Z—(XXr + 1) XX

1
50 W =51z + z")
6: L, =I1-D;Y?w,D;%?
k
= L,
70 Ry = (1 - Et) X7

8 until | W, - W, 1|2 <e
Output: Graph-filtered adjacency matrix W « W,
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N
dii:ZWij ie {177N} (3)
j=1

Using Egs. (2) and (3), the normalized graph Laplacian matrix is
computed as [4]:

L=1I— (D) *W(D) /2 [€))

The spectral clustering algorithm is then applied to L to assign cluster
labels to the data points: F € NY*C. Based on the self-expressive data
model X=XZ, many SC algorithms focus on learning the representation
matrix Z by solving the following optimization problem:

mzin%H X —XZ|% + A(Z) + 1g(Z) s.t. diag(Z) = 0. 5)

In Eq. (5), f and g are regularization functions imposed on Z, while 1
and 7 are regularization constants (hypeparameters). For sparse SC (SSC)
[51, f(Z) = || Z || and z=0. For LSR SC [71, f(Z) = || Z ||r and 7=0. For
SOLO low-rank sparse SC (LRSSC) [81, f(Z) = || Z ||s, and g(Z) = || Z ||o. If
the constraint diag(Z)=0 is removed from Eq. (5), the LSR SC algorithm
has an analytical solution:

Z=(X"X + 1) 'X'X. (6)

For LRR SC, SSC, and SOLO LRSSC solutions of Eq. (5) are obtained
iteratively using the alternating direction method of multipliers
(ADMM) [25]. It is straightforward to derive the nonlinear kernel-based
version of the LSR SC algorithm (6) by replacing X'X with the Gramm
matrix K(X,X):

Z = (KX, X) + ) 'K(X, X). )

Thus, the kernel version of the LSR SC also depends on one hyper-
parameter, A. However, the number of hyperparameters increases
depending on the choice of the kernel function. For instance, if we select
the Gaussian kernel «(x;,x;) = exp(— || x; — xj[| /26%), the variance ¢
becomes an additional hyperparameter. Graph filtering can be an
alternative to kernel methods for clustering data generated from mani-
folds [12]. This method generates a smoothed (filtered) version of the
feature matrix as follows:

k
X = (I 72) X' (8)

where k is a non-negative integer. Instead of applying the selected SC
algorithm to the original data matrix X, it is applied to the graph-filtered
data X. The data adjacency matrix W is typically computed from Eq. (2),
where Z is the representation matrix estimated by a SC using self-
representation model X=XZ. Since the goal is to apply SC algorithm
to X, we implement a graph-filtering version of the algorithm in an
iterative manner [12]. This process is illustrated in Algorithm 1, which
combines graph filtering with the LSR SC. Unlike kernel methods, it does
not suffer from problems analogous to kernel selection.

In many real-world experiments, collected data originate from
multiple modalities. For example, the same documents may be available
in multiple languages [26], while different descriptors can be generated
for the same image [27]. These scenarios lead to the multi-view SC
(MVSC) problem [8,9]. A multi-view dataset composed of V views is
denoted as {X) € RPN }Ll . The objective of MVSC algorithms is to
learn a data affinity matrix that integrates all the views and then apply
spectral clustering to assign labels to data points. The LMVSC method
proposed in [10] has linear complexity in terms of the number of sam-
ples and solves the following optimization problem:

\4
min " || XY = AV |7 + 2] 27 |7 50 <2V, Z)1=1. ()
A v=1
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In Eq. (9), AV
Z" ¢ RVM is the representation matrix for the v-th view, and 1 is a
vector of ones. The view-dependent data adjacency matrices are con-
structed as:

€ RPM represents the M anchors for the v-th view,

T 50 _ N

AR AR A D (10)
The final data adjacency matrix that represents all views is obtained

as:

1 \4
=7 Z an
The outlined LMVCS algorithm has two hyperpamerters: M and A.
Almost all (traditional) SC algorithms follow a two-stage process to
assign cluster labels to data points. In the first stage, spectral decom-
position of data affinity matrix is performed, resulting in a continuous
relaxation of the binary cluster indicator matrix. In the second stage, the
k-means algorithm is used to round this continuous relaxation into a
binary indicator matrix. However, this two-stage approach can lead to
severe information loss and performance degradation [28]. To address
this issue, the multi-view clustering via multiple Laplacian embeddings
(MCMLE) method was proposed in [28]. It aims to learn a unified N x C

binary indicator clustering matrix Y € Ind that represents all views. This
matrix is obtained by solving the following optimization problem:

( ( F<V>) — atr (FW)TD(V%Y)) + Bl A I3,

\4
stFYTEY =1, Yelnd, ) A"

v=1

=1,2V >0

(12)

v . i
where a>0 and >0 are penalty parameters, {L},_, are view-specific
NxC1V
R }v:l
specific partitions, and components of A< Ry are view-specific

weights. The MCLME algorithm introduces two hyperparameters: a
and f.

normalized Laplacians in the form of Eq. (4), {F(V) are view-

3. The proposed method

In this section, we present our pseudo-label approach to HPO for the
selected SC algorithm. For the sake of readability, we first describe
methodology for SC algorithms that depend on a single hyperparameter.
Examples of such algorithms include LSR SC (6), sparse SC [5], low-rank
representation SC [6], LMVSC (9)-(11) [9]. We then extend our
approach to SC algorithms that depend on two hyperparameters. Ex-
amples in this category include kernel LSR SC (7), assuming a Gaussian
kernel, SOLO LRSSC algorithm [6], graph filtering LSR SC [12] also
presented in Algorithm 1, and the MCLME algorithm [28].

3.1. Label-free self-guided hyperparameter optimization

Let us assume that the selected SC algorithm depends on a single
hyperparameter 4, and that the predefined search space A := [11,...,Am],
A>0, contains the optimal value 1*. We also assume the hyperparameter
values are ordered such that 1;<l2<...<ly. We use widely known
clustering performance metric accuracy (ACC) and normalized mutual
information (NMI) to measure alignment between pseudo-labels
generated by proposed method at selected hyperparameter values. Let
the cluster labels (pseudo-labels) generated by the SC algorithm for
hyperparameter values A be denoted by:

{y(%) € Ind == {y.(2:)}0, }Zl (2

To simplify notation going forward, we shall use the shorthand y; =

Pattern Recognition 172 (2026) 112618

y(4) and y,,; = y(4i41). Let h(y;, y,,,) represent either ACC(y;,y,,) or
NMI(y;,y:,1)- By treating 1;;; as a constant, we assume that h is either a
monotonically increasing function of 4; and 2, :

h(y; ¥ii1) < A(Yii1s Yica) a4
or a monotonically decreasing function of 4; and 4; 2:

h(yi,¥ii1) 2 (Yo Viga)- (15)
Next, we now locate the subinterval [4;,1;,1] where h(y;,y;,,) is

maximal, i.e.:

i= argmaxh(yj,yjﬂ) 1<j<M. (16)
j

Let the iteration index be set to t=1, and denote 2 = 4 and 1Y =
Ai+1. We now define hyperparameter search space at iteration t as:

A0 = 2025 29 29 a7

(2x4" +4P) /3and 2Y = (A + 2 x 2} /3. We then
use the selected SC algorithrn to generate pseudo—labels y(zt) and y(; ), and

estimate h(y{",y}’), h(yy',y5') and h(y5',y,’). The subinterval [4{"*"),
lE{H)]

where /1(2[) =

is refined according to the following rules:

ifth(y\.yy)) > h(yy.yy) andh(y.ys)) > h(yy.y})
j«(lHJ)(_/l(l[), /15‘[4»1) (_/1(2[)

elseifh(yy,yy') > h(y\,yy) and h(yy,yy') > h(y$,yY)
. 18
ﬂr+1 i(z) ﬂt“) /1(30 18)

else
(t+1) ) ,(t+1) (t)
/1 /1 LAy ey

end

We then increment the iteration index to t<t+1 and repeat the
process. HPO stops when the relative error criterion is satisfied:

’IEtHl) _ /15””

19)

AT
where ¢ is a predefined constant. In our experiments, reported in section
4, we set ¢ = 0.001. After the stopping criterion is met, the optimal
hypeparameter value is obatined as:
(t+1) t+1
= M (20)
2

The experiments presented in section 4 brought to light an important
issue related to the selection of the hyperparameter space A := [11,...,Au].
If two neighboring hyperparameters 4; and /;,; are set "too close" to each
other, the corresponding metric h(y;,y, ;) may exhibit a high value.
However, the actual performance based on the true labels, h(y,;,y*), can
be quite poor. This scenario is illustrated in Fig. 2, where both ACC and
NM], as functions of A := [44,...,4m], are estimated by the oracle version
of the LSR SC algorithm (left) and pseudo-labels based version of the LSR
SC algorithm (right). We summarize our approach to HPO in SC in Al-
gorithm 2.

3.2. Extension of proposed approach to HPO for SC algorithm with two
hyperparameters

We now extend our approach to HPO for SC algorithms with two
hyperparameters, such as kernel LSR SC (7) (assuming Gaussian kernel),
SOLO LRSSC algorithm [6], graph filtering LSR SC [12] (also presented in
Algorithm 1), and the MCLME algorithm [28]. Let us assume that the
hyperparameter space is defined by A := {41, ...,Ay} and 7 := {71,...,7.}.
First, we preset the hyperparameter 7 to a value 7 = 7;/; (other options
may also be considered). We then apply Algorithm 1 with the predefined
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Fig. 2. Illustration of possible problem in proposed approach to label-free HPO for LSR SC algorithm [71], on COIL20 dataset. Hyperparameter grid values A; = 107
and A, = 10°° are set too close. (a) Accuracy and NMI at A := {107,107%,1075,107%,107%,1072,107, 1,10}. The value 0.6519 of maximal accuracy computed with
external (hard) labels occurs at Ay = 0.1. As for NMI, the maximal value 0.7733 occurs at Ag = 10. (b) Accuracy and NMI computed between pseudo-labels generated
by the same grid values of A as previously. Maximal values occur between pseudo-labels generated by A, = 10" and A3 = 10”°. Consequently, new iteration 1 begins

on the interval with bordersl(ll) =1, =10"% and /1(21) = A3 = 107°. That is incorrect.

hyperparameter space A to compute 1*. Afterward, we fix 1 at the ob-
tained value 4 = 1%, and apply Algorithm 1 with the predefined hyper-
parameter space T to compute 7*. Described approach is based on
implicit assumptions on h;, , (y;,y;,1) and hy- (y;,¥, ), analogous to Eqgs.
(16) and (17). Specifically, we assume that h, , (y;,¥;.;) is a monotonic
function of 7; and 7;,1, and h;- (yi, Vi +1) is a monotonic function of J; and
Ai+1. The subscriptsz; /» and superscript 2* indicate that the performance
indices are computed with these parameters. Described method for HPO
of the SC algorithms with two hypeparameters can be straightforwardly
extended to HPO of the SC algorithms that depend on three or more
hyperparameters.

3.3. Extension of proposed approach to HPO of SC algorithm for out-of-
sample data

Many SC algorithms are unable to cluster out-of-sample (also known
as unseen or test) data. In other words, to cluster an unseen data point,
the algorithm must be re-run again on the entire data, including the new
data point. This requirement significantly reduces the scalability and
applicability of these algorithms in large-scale or online clustering
problems. Here, we address the problem of clustering out-of-sample data
by LFSG SC algorithm by formulating it as a minimization problem

Algorithm 2
Proposed approach to a HPO for a single hyperparameter SC algorithm (e.g., LSR
SC Eq. (6), [7D.

Input: Feature (data) matrix X, initial hyperparameter space A := [11,...,Au], stopping
criterion € = 0.001.
1: Locate the subinterval [4;, A1) where h(y;,y;,,) is maximal, i.e.:

i= argmaxh(yj,yjﬂ) 1<j<M(18).
j

: Set t=1, and denote 1Y = 4, A = 21,y = y; and y{ =y,

sSet AV = (2x4Y +49) /3and 1Y = (AP + 2 x AY) /3.

Use the selected SC algorithm to generate pseudo labels y(;) and yg).

: Estimate h(y(f),y(zt)), h(y(zt)ﬁyg”) and h(yg)ﬁyg)).

: Use Eq. (18) to select borders of the next subinterval A" and 2{*?.

: If the relative error criterion (13) is met, proceed to step 13.

: Compute 257 = (2 x A 4+ 241) /3, and A7 = (1Y 4+ 2 x 257) /3.
: Use selected SC algorithm to generate pseudo-labels y(lt“J, ygﬂ), ng
10: Estimate h(y\™,y5™"), h(yy™,y§™) and h(ys™,y5™).

11: Increment tet+1.

12: Return to step 6.

13: Compute optimal hyperparameter value A* using Eq. (20).

Output: The optimal hyperparameter value 2*.

© ® N U oh W N

Jand yE:“J .

based on the point-to-a-subspace distance criterion. Using the partitions
obtained by the selected algorithm on the in-sample dataset, we estimate
the subspace bases [13]:

C
X <X, — |X.. X, (21)
———
N, times -1

where X, = Niczlfglxc(n), US,X. = X, ¢ |N. = N, and C is the

number of clusters. From {X; = UCZ‘.C(VC)T}CC:1

normal bases by extracting the first d left singular vectors of each

we estimate the ortho-

. . c .
partition, i.e. {UC e RP Xd}C:1 [13]. For a test data point x, we compute

the point-to-a-subspace distances {d. = || X — Uc(U.)"%c||,} as follows:

¢ = argmind, (22)
ce{l....C}

where X, = x — X.. We assign the label {c}f:1 to the test data point:

1, if ¢ = argmind,

[n’(x)}c = { ce{1,..C} . (23)

0, otherwise.

3.4. Formulation of proposed approach to HPO for out-of-sample
extension of the kernel LSR SC algorithm

To apply the point-to-a-subspace distance criterion for clustering
out-of-sample data in reproducible kernel Hilbert space (RKHS), the
approach presented in section 3.3 has to be slightly adapted. Due to the
space limitation, we provide full derivation of proposed approach to
HPO for out-of-sample extension of the kernel LSR SC algorithm in the
supplement.

3.5. Interpretable LFSG SC

As with many other complex prediction models, SC algorithms
generally suffer from the issue of interpretability. In our approach to
LFSG SC, we propose a method to interpret or explain the results ob-
tained by the LFSG SC algorithm. Notably, this proposed approach is
also applicable to the oracle versions of the corresponding SC algorithm.
Our method relies on the visualization of subspace bases estimated from
the in-sample data, using the clustering partitions produced by the
selected SC algorithm. Let the SVD of each in-sample cluster partition be
represented as:
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C
c=1"

{X. =UZ(V)"} (24)

We aim to visualize each partition. To achieve this, we compute the
representative of each cluster as:

C

d
{ac €RP = E UC(:vj)EC(jvj)} (25)
=

c=1

In Eq. (25), d represents the subspace dimension, which is known a
priori. For example, face images of each subject in the EYaleB dataset lie
approximately in a subspace of d = 9 dimensions [29], while hand-
written digits such as those in the MNIST dataset, appriximately lie in a
subspace of d = 12 dimensions [30]. Since SC algorithms typically
vectorize image data samples, we need to matricize the representative
vectors to recover their original 2D form. Let us assume the dimensions
of the imaging data are Dy and Dy, where D=D, x Dy. Using MATLAB
notation, we reconstruct the images of the cluster representatives as:

{A. € RP* = reshape(a.,Dy,D,) }¢ . (26)

We demonstrate the proposed visualization method on the USPS
dataset [31], which contains images of handwritten numerals organized
into C=10 clusters. Each grayscale image has dimensions Dy = D, = 16.
Fig. 3 shows the visualization results for correctly labeled data, as well as
for data labeled by both the oracle and LFSG versions of the SOLO LRSSC
algorithm [6]. Despite the inherent rotational indeterminacy of the
proposed visualization, the numerals corresponding to each group are
recognizable, allowing us to explain the decisions of both the oracle
LFGS versions of the SOLO LRSSC algorithm. The LFSGSC method can, at
a conceptual level, be compared with the LIME algorithm [32]. LIME’s
core idea is to perturb the features and track any changes in the model’s
prediction. This helps to identify which features significantly influence
the model’s decision-making process. Similarly, LFSGSC generates
pseudolabels and visualize the subspace using the resulting clustering
partitions. This allows users to assess importance and influence of spe-
cific combination of hyperparameters.

4. Experiments
4.1. Single-view SC algorithms

We evaluate the proposed approach to HPO on LSR SC algorithm (6),
[71, graph-filtering version of LSR SC algorithm in Algorithm 1, kernel
LSR SC algorithm (7), [7], sparse SC (SSC) algorithm [5], and SOLO low
rank sparse SC (LRSSC) algorithm [6]. For this evaluation we use six
datasets: MNIST [33], USPS [31], EYaleB [34], ORL [35], COIL20, and
COIL100 [36]. For each algorithm, we compute accuracy and normal-
ized mutual information (NMI) to select the optimal hyperparameter
value over the specified search space. This is done using both the true
labels (the oracle) and pseudo-labels, following the label-free
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self-guided (LFSG) approach. For clarity, we define the oracle version of
a given algorithm as the clustering performance achieved when its
hyperparameters are optimized using the true ground-truth labels. After
determining the optimal hypeparameter value, we compute accuracy,
NMI and F1-score using the true labels to assess clustering performance.
To evaluate the robustness of the algorithms, we randomly split each
dataset into in-sample and out-of-sample partitions and repeat the
clustering process 25 times. This allows us to statistically compare the
oracle and LFSG versions of each selected SC algorithm using the Wil-
coxon rank-sum test implemented by MATLAB command ranksum. The
null hypothesis of the test assumes that the data come from continuous
distributions with equal medians, at a 5 % significance level. A p-value
greater than 0.05 indicates acception of the null hypothesis. The main
information on datasets used in the experiments are summarized in
Table 1. Due to space limitation we present in the main paper results
after HPO, using the accuracy metric in a form of bar diagrams. Full
numerical results, including information about statistical significance,
for both accuracy and NMI metrics are presented in the supplement.

4.1.1. Least squares regression SC algorithm

Fig. 4 presents the clustering performance of the oracle and LFSG
versions of the LSR SC algorithm for hyperparameter selection based on
ACC criteria. Table S1 in supplement gives complete numerical results
for hyperparameter selection based on ACC and NMI criteria including
statistical significance analysis. The p-values are provided at the 95 %
confidence interval for instances when the statistical difference between
the oracle and LFSG versions was insignificant, i.e., when the null hy-
pothesis (equal medians) is accepted. These findings suggest that the
proposed LFSG LSR SC algorithm performs comparably to its oracle
counterpart. For further details on the hyperparameter A search space
for each dataset, we direct interested readers to the publicly available
code. As shown in Fig. 4, the LFSG version on in-sample data typically
has up to 4 % lower clustering performance to the oracle version, while
on out-of-sample data, the performance difference is typically less than 1
%. This suggests that the partitions generated by the LFSG version on in-
sample data are sufficiently robust to estimate accurate subspace bases
for clustering out-of-sample (test) data.

4.1.2. Kernel least squares regression SC algorithm

For the kernel LSR SC algorithm (7), we selected the Gaussian kernel,
introducing variance o2 as an additional hyperparameter alongside .
Fig. 5 presents the clustering performance of the oracle and LFSG ver-
sions of the kernel LSR SC algorithm for hyperparameter selection based
on ACC criteria. Table S2 in supplement gives complete numerical re-
sults for hyperparameter selection based on ACC and NMI criteria
including statistical significance analysis. As observed in Table S2, the
oracle version typically outperforms the LFSG version by 3-4 %. How-
ever, in several cases, the performance difference on in-sample data is
statistically insignificant. Notably, for out-of-sample data, the LFSG

Fig. 3. Visualization of subspace bases representing the numerals in the USPS dataset [31], from O to 9 in order. The bases are estimated from 50 randomly selected
data samples per cluster (numeral). Clustering is performed using the SOLO LRSSC algorithm [6]. From top to bottom: partitions are composed of (1) correctly labeled
data, (2) data labeled by the oracle version of the SOLO LRSSC algorithm, (3) data labeled by the LFSG version of the SOLO LRSSC algorithm. The clustering accuracy

of both versions is approximately 85 %.
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Table 1
Main information on datasets used in the experiments with single-view SC
algorithms.

Dataset #Sample  #Feature  #Cluster  #in-sample/out-of-sample per
group

MNIST 10000 28 x 28 10 50/50

USPS 7291 16 x 16 10 50/50

EYaleB 2432 48 x 42 38 43/21

ORL 400 32 x 32 40 7/3

COIL20 1440 32 x 32 20 26/26

COIL100 7200 32 x 32 100 26/26

version achieves significantly better performance on all datasets. This
suggests that the partitions generated by the LFSG version on in-sample
data are more robust for estimating accurate subspace bases for clus-
tering out-of-sample (test) data. It can be argued that the oracle version
could also produce more robust partitions, if a denser hyperparameter
search space were employed. However, this would significantly increase
computational complexity.

4.1.3. Graph filtering least squares regression SC algorithm

As shown in Algorithm 1, the graph-filtering LSR SC algorithm in-
troduces an additional hyperparameter, the filter order k, alongside the
regularization constant A. Unlike the LSR SC and kernel LSR SC algo-
rithms, we have not yet formulated an out-of-sample extension for the
graph-filtering LSR SC algorithm. Therefore, all results presented in
Fig. 6 and Table S3 in the supplement are based on in-sample-data. As
seen in Table S3, the performance difference between the oracle and
LFSG versions is typically less than 4 %, and sometimes below 2 %. For
the ORL, COIL20, and partially USPS datasets, there is no statistically
significant difference in performance between the two versions. In
several instances, there is also no statistically significant difference in
hyperparameter estimates obtained by the oracle and LFSG versions.

4.1.4. Sparse SC algorithm

In the implementation of the sparse SC algorithm, we distinguish
between two cases: when the error/noise term is Gaussian and when it is
sparse, see [5]. The first case of the SSC algorithm is derived from Eq. (5)
by setting f(Z) = || Z ||; and =0, requiring the coefficient representation
matrix Z to be sparse. The second case, robust to outliers, is defined by:

min|| X —XZ |y + 2| Z ||, st. diag(Z) = 0. 27)

Eq. (27), represents robust version of the SSC algorithm, used to
cluster the extended YaleB dataset. All other datasets were clustered
using the non-robust version of the SSC algorithm. The SSC algorithm
has one hyperparameter, 4. In its implementation, as outlined in [5], a
scaled regularization constant is introduced @ = A /u. For the non-robust
version,y%miinn}gx!xijL i,j = 1, N, and for the robust version,

uéminmgx“ xjl,, i,j = 1, N, giving us 4 = a x u. When defining the
i j#

search space, we preset @ € N,. As seen in Fig. 7 and Table S4 in the
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supplement, for ORL, EYaleB, MNIST, USPS, and COIL20 the perfor-
mance of the oracle version on in-sample data is mostly up to 6 % better
than the LFSG version. For COIL100 dataset, the LFSG version yields up
to 2 % better performance. On out-of-sample data, the difference in
performance is in many cases statistically insignificant.

4.1.5. Low-rank sparse So/¢o SC algorithm

The SOLO LRSSC algorithm [6] is derived from Eq. (5) by setting
f(Z)=||Z|s, and g(Z) = || Z ||o. In our implementation, as outlined in
Algorithm 2 of [6], we further set A4+7=1, meaning 7=1-A. The second
hyperparameter, a>0, is the penalty constant in the ADMM-based
implementation of the SOLO LRSSC algorithm. As shown in Fig. 8 and
Table S5 in supplement, for the ORL dataset, the clustering performance
of the LFSG version is up to 15 % lower than the oracle version, both on
in-sample and out-of-sample data. On other datasets, the LFSG version’s
performance is typically up to 6 % lower than that of the oracle version,
with similar results observed for out-of-sample data.

4.2. Multi-view SC algorithm

We also evaluated the performance of the proposed HPO approach
on the multi-view LMVSC algorithm [9] and multi-view MLME algo-
rithm [28]. As there are no out-of-sample extensions for the LMVSC and
MLME algorithms, the results presented in Tables S7 and S8 pertain only
to in-sample data. We compare clustering performance of MLME and
LMVSC algorithms with fast parameter free multi-view subspace clus-
tering algorithm with consensus anchor guidance (FPMVS-CAG), [10],
on three multi-view datasets: Handwritten-numerals, BBC, and
Caltech101-20. They are available at links provided in sections 4.2.1 and
4.2.2. Our motivation is to demonstrate that proposed LFSG version of
MLME and LMVSC algorithms outperforms the parameter-free
FPMVS-CAG which justifies application of proposed method to the
existing SC algorithms. Performance metrics were calculated using
in-sample data from 70 % randomly selected samples per cluster. Main
information on used multi-view datasets are summarized in Table 2.
Results obtained by FPMVS-CAG algorithm are given in Table 3.

4.2.1. Multi-view LMVSC algorithm

The LMVSC algorithm, formulated in Eq. (9), introduces two
hyperparameters: the number of anchors M and the regularization
constant a. The MATLAB code for the original version of this algorithm,
provided by the authors, is available at https://github.com/scka
ngz/LMVSC. Fig. 9 and Table S7 in supplement report results on 25
runs, using data randomly selected from the 70 % of the total number of
samples per cluster. As shown in [10], the optimal hyperparameter
values for the Handwritten_numerals dataset are M=10 and a=10"3. In
comparison with [10], we slightly modified the search space, Me{10,
15, 25, 50} and ac{10*,107%, 102 107, 1, 10}, which improved the
oracle’s performance compared to the original results in [11]. As shown
in Table S7, the oracle version estimated the optimal hyperparameter
values M=25 and a=10"* using either ACC or NMI as the selection
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Fig. 4. The clustering performance of the oracle and LFSG versions of the LSR SC algorithm on the in-sample data (left) and out-of-sample data (right).
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Fig. 5. The clustering performance of the oracle and LFSG versions of the kernel LSR SC algorithm on the in-sample data (left) and out-of-sample data (right).
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Fig. 6. The clustering performance of the oracle and LFSG versions of the graph
filtering LSR SC algorithm.

metric. The LFSG version estimated hyperparameter values with a slight
displacement relative to the oracle values. As can be seen in Table S7,
the LFSG version’s performance is typically up to 7 % lower than that of
the oracle version. In comparison with parameter-free FPMVS-CAG
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algorithms, the LFSG LMVSC algorithm achieves better results on
Handwritten numerals and BBC datasets, and worse results on
Caltech101-20 dataset. Arguably, the last result could be improved by
evaluating the quality of clustering partitions visualization but that
would increase computational complexity of LFSG LMVSC method.

4.2.2. Multi-view MLME algorithm

The MLME algorithm, formulated in Eq. (12), introduces two
hyperparameters: a and . The MATLAB code for the original version of
this algorithm, provided by the authors, is available at https://github.
com/Ekin102003/MCMLE. We compared the oracle and LFSG ver-
sions using the BBC dataset and Handwritten numerals dataset. Fig. 10
and Table S8 in supplement report results after 25 runs using data
randomly selected from the 70 % of the total number of samples per
cluster. Researchers in [28] shown that the optimal values of the
hyperparameters for the BBC dataset are #>10 and a< [0.0005, 0.01].
As shown in Table S8, the oracle version correctly estimated the
hyperparameters using either ACC or NMI as the selection metric. The
LFSG version also estimated hyperparameter values within the sug-
gested range. The same observation applies to results obtained on the 70
% randomly sampled data, although the mean values deviated from
those values obtained on the full dataset.
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Fig. 7. The clustering performance of the oracle and LFSG versions of the SSC algorithm on the in-sample (left) and out-of-sample (right) data.
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Table 2
Main information on datasets used in the experiments with multi-view SC
algorithms.

Dataset #Sample #Views #Cluster

Handwritten numerals 2000 6 10

BBC 685 4 5

Caltech101-20 2386 6 20
Table 3

The clustering performance of the FPMVS-CAG algorithm. Performance metrics
were calculated using in-sample data from 70 % randomly selected samples per
cluster.

Dataset ACC [%] NMI [%] F1 score [%]
Handwritten_numerals 82.25+0 79.30 £ 0 75.60 + 0
BBC 32.26 + 0 2.97 + 0 27.59 + 0
Caltech101-20 65.47 + 0 63.26 4+ 0 69.05 + 0
90
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Fig. 9. The clustering performance of the oracle and LFSG versions of the
LMVSC algorithm.

4.2.3. Fast parameter-free multi-view subspace clustering with consensus
anchor guidance

Researchers in [9] proposed the fast parameter-free multi-view
subspace clustering with consensus anchor guidance (FPMVS-CAG)
method, with the MATAB code available at: https://github.com/wang
siwei2010/FPMVS-CAG. In this algorithm anchor selection and sub-
space graph construction are conducted into a unified optimization
framework. Importantly, the algorithm is proven to have linear time
complexity with respect to the number of samples. Even more impor-
tant, the algorithm can learn the anchor-graph structure without
hyperparameters.

5. Conclusion

Performance of many subspace clustering (SC) algorithms heavily
depends on the availability of held-out datasets for hyperparameters
tuning. To address this limitation, we propose a label-independent
approach to HPO optimization in existing SC methods. This approach
leverages clustering quality metrics such as ACC or NMI, computed in a
self-guided manner from pseudo-labels generated by the clustering al-
gorithm over a predefined grid. Additionally, we advocate for visual-
izing the clustering partitions produced by the proposed method to
enable domain experts to asses clustering quality and, if necessary, guide
the refinement of the hyperparameters search space. These aspects
represent strengths of our HPO method. One limitation of proposed
approach lies in its reliance on the initial assessment of the hyper-
parameter search space. If the initial hyperparameters are set "too
closely" together, the method may be misled. While the visualization
feature empowers domain experts to refine the hyperparameters search
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Fig. 10. The clustering performance of the oracle and LFSG versions of the
MLME SC algorithm.

space, it requires their involvement, thereby increasing the method’s
overall computational complexity. Another potential weakness is the
method’s dependence on the smoothness assumption of clustering
quality metrics. Although sensitivity analyses in several studies supports
the validity of this assumption, it may not hold for a certain combination
of SC algorithms and datasets. In such cases, proposed method may not
perform satisfactorily. To enhance robustness against suboptimal initial
search space configurations, we aim to evaluate the quality of the
pseudo-labels generated by the method. One potential solution involves
using non-parametric clustering algorithms, such as k-means, to produce
the "target" pseudo-labels. While not highly accurate, they can reflect the
underlying partition structure of the dataset, enabling our LFSG SC
method to identify initial points in the hyperparameter search space that
best align with the "target" labels. Another promising direction is to
explore metrics related to intra-cluster compactness and inter-cluster
separability to select partition corresponding to optimal hyper-
parameter values. For cases where the data distribution may violate the
smoothness assumption, we consider methods for integration of
crowdsource labels. This approach treats each set of pseudo-labels
generated by an SC algorithm under a specific hyperparameter setting,
as an annotation. Methods such as [37] can then estimate the reliability
of each "annotator", enabling weighted majority voting to infer a
consensus label estimate. Due to space limitation, we did not validate
our approach on deep subspace clustering (DSC) methods such as [38,
39]. It is, however, clear that procedure described in section 3.2 can
perform tuning of the two hyperparameters of the DSC [38,39]. We
anticipate that the LFSG SC method has significant potential to repur-
pose existing SC algorithms for new domains with unlabeled data,
effectively addressing the challenge of label dependency.
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