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A R T I C L E I N F O A B S T R A C T 

Editor: N. Lambert Minimal massive supergravity is the supersymmetric extension of minimal massive gravity in three dimensions. 
The theory admits a supersymmetric anti-de Sitter vacuum around which the propagating modes of spin 2 and 
3/2 combine into a supermultiplet. In this letter, we determine the most general supersymmetric solution of 
the theory by analyzing its Killing spinor equations. Just as for topologically massive supergravity, the general 
supersymmetric solution is a plane wave with a null Killing vector field. As a particular subclass we find null
warped AdS3 spaces and, with proper periodic identfications, null-warped AdS3 black holes.

1. Introduction

Minimal massive gravity (MMG) in three dimensions is an intriguing 
example of massive gravity [1]. It is a deformation of topologically mas
sive gravity (TMG) [2,3] by a term quadratic in the Schouten tensor. The 
model still admits an Anti-de Sitter (AdS) vacuum, but as a consequence 
of the deformation it overcomes the unitarity problems from which most 
other 3D massive gravity models suffer: there is a region in parame
ter space of MMG in which the massive spin 2 mode around the AdS 
vacuum is neither a ghost nor tachyonic, while both Brown-Henneaux 
central charges remain positive. That is, both bulk and boundary theory 
are unitary. The supersymmetric extension to minimal massive super
gravity (MMSG) has been constructed recently [4,5]. In particular, it 
was found that every MMG model carrying unitary AdS vacua admits a 
supersymmetric extension in which these AdS vacua are supersymmet
ric. Accordingly, the propagating modes of spin 2 and 3/2 around the 
vacuum combine into an AdS supermultiplet of the dual superconformal 
field theory.

In this letter, we give a systematic study of the Killing spinor equa
tions of MMSG in order to identify its most general supersymmetric solu
tion. The analysis closely follows the lines of [6] for topologically mas
sive supergravity (TMSG) [7,8] and interestingly reduces to the same 
type of differential equation. Accordingly, the supersymmetric solutions 
of MMSG are in correspondence with the supersymmetric solutions of 
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TMSG and given by plane waves with a null Killing vector field. A par
ticular subclass thereof corresponds to null warped AdS3 spaces. Such 
solutions have appeared before in the analysis of supersymmetric solu
tions of  = (1,1) and  = (2,0) TMSG [9,10], respectively, as well as 
among the supersymmetric solutions of new massive gravity [11], gen
eral massive gravity [12], and  = (4,0), SO(4) gauged supergravity 
[13].

The rest of this letter is organized as follows. In section 2 we review 
the structure of MMG and its supersymmetric extensions. In section 3, 
we analyze its Killing spinor equations and derive the general supersym
metric solution which is a plane wave with a null Killing vector field. 
In turn, we find that any such solution is supersymmetric in one of the 
supersymmetric extensions of MMG. A particular subclass yields null
warped AdS3 spaces. In section 4, we discuss the resulting null-warped 
AdS3 black holes upon proper periodic identfications.

2. Minimal massive supergravity

A convenient manner to formulate minimal massive supergravity 
(MMSG) is in terms of a dreibein 𝑒𝜇𝑎, a one-form 𝜛𝜇

𝑎 and two grav
itino fields 𝜓𝜇 and Ψ𝜇 . Its Lagrangian is up to an overall factor explicitly 
given by [4]

[𝑒,𝜛,𝜓,Ψ] = 𝜀𝜇𝜈𝜌
(
𝑒𝜇

𝑎𝑅[𝜔]𝜈𝜌,𝑎 + 𝜆 𝜀𝑎𝑏𝑐𝑒𝜇𝑎𝑒𝜈𝑏𝑒𝜌𝑐 +
𝜏

2 𝑒𝜇
𝑎𝑇 [𝜛]𝜈𝜌𝑎

)
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+ 𝜅CS[𝜛]

− 𝜀𝜇𝜈𝜌𝜓̄𝜇𝐷[𝜔]𝜈𝜓𝜌 +
1
4

(
𝜂 𝜏 + 1 

𝜂 𝜅

)
𝜀𝜇𝜈𝜌 𝜓̄𝜇𝛾𝜈𝜓𝜌

+ 1
𝜂
𝜀𝜇𝜈𝜌 Ψ̄𝜇𝐷[𝜛]𝜈Ψ𝜌 −

𝜏

2 
𝜀𝜇𝜈𝜌 Ψ̄𝜇𝛾𝜈Ψ𝜌

+ 𝜏 𝜀𝜇𝜈𝜌
(
Ψ̄𝜇 − 𝜓̄𝜇

)
𝛾𝜈

(
Ψ𝜌 −𝜓𝜌

)
, (1)

where CS is the SO(2,1) Chern-Simons Lagrangian for the connection 
𝜛𝜇

𝑎

CS[𝜛] = 𝜀𝜇𝜈𝜌
(
𝜛𝜇

𝑎𝜕𝜈𝜛𝜌𝑎 +
1
3
𝜀𝑎𝑏𝑐 𝜛𝜇

𝑎𝜛𝜈
𝑏𝜛𝜌

𝑐
)
. (2)

The Lagrangian (1) should be viewed as a second order Lagrangian in 
𝑒𝜇

𝑎, with the spin connection 𝜔𝜇
𝑎 dependent on 𝑒𝜇𝑎 and 𝜓𝜇 in the fol

lowing way:

𝜔𝜇
𝑎 = 𝜔̊𝜇

𝑎 − 1
4 𝜖

𝜌𝜎𝜏 𝑒𝜌
𝑎 𝜓̄𝜎𝛾𝜇𝜓𝜏 +

1
8 𝜖

𝜌𝜎𝜏 𝑒𝜇
𝑎 𝜓̄𝜎𝛾𝜌𝜓𝜏 , (3)

where 𝜔̊𝜇
𝑎 is the torsionless Levi-Civita spin connection:

𝜔̊𝜇
𝑎 = −𝜀𝑎𝑏𝑐𝑒𝜇𝑑𝑒𝑏𝜈𝑒𝑐𝜌𝜕[𝜈𝑒𝜌]𝑑 +

1
2
𝜀𝑏𝑐𝑑𝑒𝜇

𝑎𝑒𝑐
𝜈𝑒𝑑

𝜌𝜕[𝜈𝑒𝜌]𝑏 . (4)

The curvature of 𝜔𝜇
𝑎 and torsion of 𝜛𝜇

𝑎 that appear in the first line of 
(1) are dfined by

𝑅[𝜔]𝜇𝜈𝑎 ∶=2𝜕[𝜇𝜔𝜈]
𝑎 + 𝜀𝑎𝑏𝑐𝜔𝜇

𝑏𝜔𝜈
𝑐 ,

𝑇 [𝜛]𝜇𝜈𝑎 ∶=2𝐷[𝜛][𝜇𝑒𝜈]𝑎 = 2 𝜕[𝜇𝑒𝜈]𝑎 + 2 𝜀𝑎𝑏𝑐 𝜛[𝜇
𝑏𝑒𝜈]

𝑐 , (5)

while spinor covariant derivatives are dfined as

𝐷[𝜔]𝜇𝜖 = 𝜕𝜇𝜖 +
1
2𝜔𝜇

𝑎𝛾𝑎 𝜖 , 𝐷[𝜛]𝜇𝜖 = 𝜕𝜇𝜖 +
1
2𝜛𝜇

𝑎𝛾𝑎 𝜖 . (6)

The Lagrangian (1) furthermore depends on four parameters 𝜆, 𝜏 , 𝜅 and 
𝜂 and it is assumed that 𝜅𝜏 ≠ 0. Actually, only three of these parameters 
are independent, since there exists the following relation among them

𝜆 = 1 
12

(
𝜂𝜏 + 1 

𝜂𝜅

)2
− 𝜏

3 

(
𝜂𝜏 − 1 

𝜂𝜅

)
. (7)

Up to quartic fermion terms, the Lagrangian (1) is invariant under the 
following supersymmetry transformation rules:

𝛿𝜖𝑒𝜇
𝑎 = 1

2
𝜓̄𝜇𝛾

𝑎𝜖 ,

𝛿𝜖𝜓𝜇 = 𝐷[𝜔]𝜇𝜖 −
1
4

(
𝜂𝜏 + 1 

𝜂 𝜅

)
𝛾𝜇𝜖 ,

𝛿𝜖𝜛𝜇
𝑎 = − 1 

2𝜂𝜅
Ψ̄𝜇𝛾

𝑎𝜖 − 1
2
𝐷[𝜛]𝜇

(
Ψ̄𝜈𝜖 𝑒

𝜈𝑎 − 𝜓̄𝜈𝜖 𝑒
𝜈𝑎
)
,

𝛿𝜖Ψ𝜇 = 𝐷[𝜛]𝜇𝜖 −
1
2
𝜂𝜏 𝛾𝜇𝜖 +

1
4
(Ψ̄𝜆𝜖 − 𝜓̄𝜆𝜖) 𝛾𝜆Ψ𝜇 . (8)

MMSG describes the propagation of a single massive spin 2 mode, 
along with a fermionic superpartner of spin 3/2. Remarkably, when 
considered around an AdS vacuum, there exists a region in its parame
ter space where MMSG is unitary, in the sense that the massive modes 
that are propagated are not tachyonic, nor ghost-like and that the cen
tral charges of its asymptotic Virasoro × Virasoro symmetry algebra are 
both positive. For supersymmetric AdS vacua, this unitarity region can, 
after changing the overall sign of the Lagrangian (1), be succinctly de
scribed by the conditions:

𝜂 < 0 , 𝜅𝜏 < 0 . (9)

We refer to [4,5] for a detailed analysis of the unitarity region around 
arbitrary, not necessarily supersymmetric AdS vacua.

In the following we will be interested in supersymmetric solutions 
of MMSG, with vanishing fermions. Let us therefore comment on the 
bosonic equation of motion of the model. The bosonic part of the La
grangian (1) is at most second order in derivatives for two fields 𝑒𝜇𝑎 and 
𝜛𝜇

𝑎. In the equations of motion, the latter field can however be elim
inated to yield a third-order bosonic equation of motion for the metric 

field, known as a ‘third-way consistent’ equation, which cannot be de
rived from an action solely expressed in terms of the metric. Specifically, 
from variation w.r.t. 𝑒𝜇𝑎, one finds the following solution for 𝜛𝜇

𝑎

𝜛𝜇
𝑎 = 𝜔̊𝜇

𝑎 − 1 
𝜏

(
𝑆𝜇𝜈𝑒

𝜈𝑎 + 3𝜆
2 
𝑒𝜇

𝑎
)
, (10)

in terms of the Schouten tensor 𝑆𝜇𝜈 . Using this in the equation of motion 
of 𝜛𝜇

𝑎 then leads to the following equation for the metric(
1 + 3𝜆 

2𝜏2

)
𝐺𝜇𝜈 −

(
𝜏

𝜅
+ 9𝜆2

4𝜏2

)
𝑔𝜇𝜈 −

1 
𝜏
𝐶𝜇𝜈 =

1 
𝜏2

𝐽𝜇𝜈 , (11)

where 𝐺𝜇𝜈 is the Einstein tensor, 𝐶𝜇𝜈 the Cotton tensor and we have 
denoted

𝐽𝜇𝜈 ∶= −1
2
𝜖𝜇𝜅𝜆𝜖𝜈𝜎𝜏𝑆

𝜅𝜎𝑆𝜆𝜏 . (12)

By performing the parameter redefinitions

𝜎̄ = − 𝜏

𝜇

(
1 + 3𝜆 

2𝜏2

)
, Λ̄0 =

𝜏

𝜇

(
𝜏

𝜅
+ 9𝜆2

4𝜏2

)
, 𝛾 = 𝜇

𝜏
, (13)

the equation of motion (11) yields the original form of the MMG equa
tion [1]

𝜎̄ 𝐺𝜇𝜈 + Λ̄0 𝑔𝜇𝜈 +
1 
𝜇
𝐶𝜇𝜈 = − 𝛾

𝜇2 𝐽𝜇𝜈 . (14)

In order to investigate supersymmetry of our solutions, we will need 
the Killing spinor equations that result from setting the supersymmetry 
variations of the gravitini (along with the gravitini themselves) equal to 
zero, i.e.

𝐷[𝜔̊]𝜇𝜖 +
𝑚

2 
𝛾𝜇𝜖 = 0 , (15a)

𝐷[𝜛]𝜇𝜖 −
1
2
𝜂𝜏 𝛾𝜇𝜖 = 0 , (15b)

where we have dfined

𝑚 = −1
2

(
𝜂𝜏 + 1 

𝜂𝜅

)
. (16)

In what follows, we will work in the formulation of the equations of 
motion, in which 𝜛𝜇

𝑎 has been eliminated by means of (10) to yield 
the third-order equation (11). The second Killing spinor equation (15b)
is then implied by the first one (15a), as follows from the identity

𝐷[𝜛]𝜇𝜖 −
1
2
𝜂𝜏 𝛾𝜇𝜖 =

(
1 − 𝑚 

2𝜏

)(
𝐷[𝜔̊]𝜇𝜖 +

𝑚

2 
𝛾𝜇𝜖

)
− 1 

2𝜏
𝛾𝜈𝛾𝜇𝜖

𝜈𝜌𝜎𝐷[𝜔̊]𝜌
(
𝐷[𝜔̊]𝜎𝜖 +

𝑚

2 
𝛾𝜎𝜖

)
, (17)

where it is understood that 𝜛𝜇
𝑎 is given by (10). When analyzing the 

Killing spinor equations and their consequences, it will thus suffice to 
only consider the first equation (15a).

For maximally symmetric solutions of the model for which 𝐺𝜇𝜈 =
Λ𝑔𝜇𝜈 , where Λ is the cosmological constant, the field equation (11) im
plies

Λ2 + (4𝜏2 + 6𝜆)Λ +
(
9𝜆2 + 4𝜏3

𝜅

)
= 0 , (18)

whose roots are

Λsusy = −𝑚2 , Λns = −𝑚2 + 2𝜏
(
(𝜂 − 2)𝜏 + 1 

𝜂𝜅

)
. (19)

Only the AdS (or Minkowski) background corresponding to Λsusy pre
serves supersymmetry (15a). Chiral points of the theory are those for 
which one of the two central charges of the dual theory vanishes. For 
the supersymmetric AdS vacuum this happens when [5]:

(𝜂 − 1)(𝜂𝜅𝜏 + 1) = 0 . (20)
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Let us finally mention that changing the sign of 𝑚, that is sending 
𝑚→ −𝑚, flips the supersymmetry parameter 𝜂 as

𝜂→ − 1 
𝜂𝜅𝜏

, (21)

in the above solution [5]. Also, it is worth pointing out that for Λns < 0, 
there is another pair of roots 𝜂̃ of (7) (related by (21)) such that

Λns = −𝑚̃2 = −1
4

(
𝜂̃𝜏 + 1 

𝜂̃𝜅

)2
. (22)

In other words, every bosonic MMG model admitting two AdS vacua 
has four different supersymmetric extensions with fermionic couplings 
dfined by 𝜂, 𝜂̃ and their images under (21), respectively, such that 
each AdS vacuum is supersymmetric in two of the extensions and non
supersymmetric in the other two.

3. All supersymmetric solutions of MMSG

In order to find general supersymmetric solutions of MMSG, we fol
low the reasoning of [6] for the case of topologically massive super
gravity (TMSG) [7,8]. The bosonic part of the TMSG field equation is of 
the form (14) with 𝛾 = 0, and its supersymmetry transformation equals 
(15a). Assuming the existence of a solution1 of the Killing spinor equa
tion (15a), one can construct the vector

𝐾𝜇 = 𝜖𝛾𝜇𝜖 . (23)

The Fierz identity then implies that 𝐾𝜇 is a null vector:

𝐾𝜇𝐾𝜇 = 0 . (24)

From (15a) it also readily follows that

∇𝜇𝐾𝜈 =𝑚𝜖𝜇𝜈𝜌𝐾
𝜌 ⟺ 𝜖𝜇𝜈𝜌𝜕𝜈𝐾𝜌 = −2𝑚𝐾𝜇 , (25)

so that in particular ∇(𝜇𝐾𝜈) = 0 and one thus concludes that 𝐾𝜇 is a 
null Killing vector. The integrability conditions for the Killing spinor 
equation (15a) are identical with those found in [6]. Following [6], one 
can then choose an adapted coordinate 𝑣 (i.e., a coordinate 𝑣 in which 
𝐾 = 𝜕∕𝜕𝑣) and use (25) to bring the metric to the following form

d𝑠2 = d𝜌2 + 2e−2𝑚𝜌d𝑢d𝑣+ ℎ(𝑢, 𝜌)d𝑢2 . (26)

For this metric, the non-zero components of the Einstein tensor are given 
by

𝐺𝑢𝑢 =𝑚2ℎ−𝑚ℎ′ − 1
2
ℎ′′ , 𝐺𝑢𝑣 =𝑚2e−2𝑚𝜌 , 𝐺𝜌𝜌 =𝑚2 , (27)

where prime ′ denotes a derivative with respect to 𝜌. The non-zero com
ponent of the Cotton tensor reads:

𝐶𝑢𝑢 = −𝑚2ℎ′ − 3
2
𝑚ℎ′′ − 1

2
ℎ′′′ . (28)

For the tensor 𝐽𝜇𝜈 (12), one finds the following non-zero components:

𝐽𝑢𝑢 =
𝑚2

4 
(
𝑚2ℎ− 2𝑚ℎ′ − ℎ′′

)
, 𝐽𝑢𝑣 =

1
4
𝑚4e−2𝑚𝜌 , 𝐽𝜌𝜌 =

1
4
𝑚4 .

(29)

The (𝜌, 𝜌) or (𝑢, 𝑣) components of the bosonic field equations (14) then 
reduce to the following relation between the parameters of the model

𝜎̄𝑚2 + Λ̄0 +
𝛾

4𝜇2𝑚
4 = 0 , (30)

which is an identity, upon using (7), (13), (16). The (𝑢, 𝑢) component of 
(14) becomes

ℎ′′′ +
(
2𝑚− 𝜏 − 1 

𝜂𝜅

)
ℎ′′ − 2𝑚

(
𝜏 + 1 

𝜂𝜅

)
ℎ′ = 0 . (31)

1 This solution for 𝜖 is taken to be a commuting spinor.

Assuming separation of variables, the most general solution for ℎ is then 
given by

ℎ(𝑢, 𝜌) = e
(
𝜏+ 1 

𝜂𝜅

)
𝜌
𝑓1(𝑢) + e−2𝑚𝜌𝑓2(𝑢) + 𝑓3(𝑢) . (32)

It was shown in [6] that the last two terms are locally redundant, in the 
sense that they can be removed by coordinate transformations. How
ever, they may be important globally. These terms can actually be gen
erated from the solution without them by using the Garfinkle-Vachaspati 
method [14,15]. It requires the solution to possess a null Killing vector 
𝐾𝜇 and amounts to finding two functions 𝜓 and Ω that satisfy

𝜕[𝜇𝐾𝜈] =𝐾[𝜇𝜕𝜈] lnΩ , 𝐾𝜇𝜕𝜇𝜓 = 0 , □𝜓 = 0 . (33)

Then, the following metric is another exact solution with the same mat
ter fields

𝑔̂𝜇𝜈 = 𝑔𝜇𝜈 +Ω𝜓𝐾𝜇𝐾𝜈 . (34)

For our solution, one finds

Ω= e−2𝑚𝜌 , 𝜓 = 𝑓2(𝑢) + 𝑓3(𝑢)e2𝑚𝜌 . (35)

It is interesting to note that the form of the general supersymmetric 
solution is exactly the same as that of TMSG [6] despite the extra 𝐽
term in the MMSG field equation (14). Taking the TMSG limit (𝛾 →
0 , 𝜎̄→ 𝜎 , 𝑚→𝑚0) as dfined in [5], the exponent of the first term goes 
to (𝜏 + 1 

𝜂𝜅
)→ (−𝑚0 − 𝜎𝜇).

Wave solutions of the form (32) were found and discussed in bosonic 
MMG in [16]. In the above derivation, we however fixed an orienta
tion (by taking 𝜀012 = −1 as in [6]), which explicitly appears in (25). In 
MMG, one can express the solution in the opposite orientation as well 
by replacing the coefficient of the Cotton tensor in the field equation 
(namely 𝜇 in TMSG and 𝜏 in MMSG) by minus itself in the solution, as 
was pointed out in [6]. In analogy to the observation of [6] in TMG, we 
find here that all MMG solutions of type (26) with a null Killing vec
tor are supersymmetric in one of the supersymmetric extensions of the 
model, discussed above in (22).

When all 𝑓𝑖 ’s in (32) are constant, this spacetime corresponds to null 
z-warped AdS with

𝑧 = − 1 
2𝑚

(
𝜏 + 1 

𝜂𝜅

)
= 1 + 𝜂𝜅𝜏

1 + 𝜂2𝜅𝜏
. (36)

When 𝑧 = 2, i.e.

𝜏 + 1 
𝜂𝜅

= −4𝑚 ⟺ 𝜏(2𝜂 − 1) + 1 
𝜂𝜅

= 0 , (37)

the solution becomes null warped AdS, also known as Schrödinger space

time [17--19]. Warped AdS solutions of MMG were also discussed in [20].
There are four special points in parameter space, where (32) is no 

longer the most general solution of (31). This is because of the fact 
that some of the exponentials appearing in (32) coincide. These spe
cial points are given by:

1. 𝜏 + 1 
𝜂𝜅

= −2𝑚 and 𝑚 ≠ 0: This implies that 𝜂 = 1, which is a chiral 
point (20). The most general solution of (31) is now given by:

ℎ(𝑢, 𝜌) = 𝜌 e−2𝑚𝜌𝑓1(𝑢) + e−2𝑚𝜌𝑓2(𝑢) + 𝑓3(𝑢) . (38)

These solutions do not lie in the unitarity region (9).
2. 𝜏+ 1 

𝜂𝜅
= 0 and 𝑚 ≠ 0: This corresponds to the chiral point 𝜂𝜅𝜏 = −1

(20). The most general solution of (31) is then given by:

ℎ(𝑢, 𝜌) = 𝜌𝑓1(𝑢) + e−2𝑚𝜌𝑓2(𝑢) + 𝑓3(𝑢) . (39)

These solutions do not lie in the unitarity region (9).
3. 𝑚 = 0 and 𝜂𝜅𝜏 ≠ −1: In this case Λ̄0 = 0 in the main field equation 

(14). At this point, the most general solution of (31) reads:
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ℎ(𝑢, 𝜌) = e
(
𝜏+ 1 

𝜂𝜅

)
𝜌
𝑓1(𝑢) + 𝜌𝑓2(𝑢) + 𝑓3(𝑢) . (40)

The vacuum solution in this case is Minkowski spacetime.
4. 𝑚 = 0 and 𝜂𝜅𝜏 = −1: In this case 𝜂 = 1 and 𝜎̄0 = Λ̄0 = 0 in the main 

field equation (14). Here, the most general solution of (31) is the 
following:

ℎ(𝑢, 𝜌) = 𝜌2𝑓1(𝑢) + 𝜌𝑓2(𝑢) + 𝑓3(𝑢) . (41)

The vacuum solution corresponds to Minkowski spacetime.

In all of these special cases, the last two terms of the solution for ℎ
are locally redundant [6,21] and can be generated using the Garfinkle
Vachaspati method [14,15] described above.

In order to explicitly find the Killing spinor, we need to evaluate the 
spin connection (4). We choose the following dreibein for the metric 
(26):

𝑒0 = e−2𝑚𝜌e−𝛽d𝑣 , 𝑒1 = e−2𝑚𝜌e−𝛽d𝑣+ e𝛽d𝑢 , 𝑒2 = d𝑟 , (42)

where ℎ = e2𝛽 . We then find the following spin connection components:

𝜔0 =𝑚e−2𝑚𝜌−𝛽d𝑣− e𝛽𝜕𝑟𝛽 d𝑢 , 𝜔1 =𝑚e−2𝑚𝜌−𝛽d𝑣−
(
𝑚+ 𝜕𝑟𝛽

)
e𝛽d𝑢 ,

𝜔2 = 𝜕𝑢𝛽 d𝑢+
(
𝑚+ 𝜕𝑟𝛽

)
d𝑟 . (43)

Choosing 𝛾0 = i𝜎2, 𝛾1 = 𝜎1 and 𝛾2 = 𝜎3, where 𝜎𝑖 are the Pauli matrices, 
it is then easily checked that

𝜖 = ℎ−1∕4 e−𝑚𝜌 𝜖0 , (44)

solves the Killing spinor equation (15a) where 𝜖0 is a constant spinor 
satisfying (𝜎1 + 𝑖𝜎2)𝜖0 = 0. So, in general these solutions are 1/2 super
symmetric except for AdS3 (that is when all 𝑓𝑖 ’s are zero in (32)) which 
is fully supersymmetric.

Let us finally note that it would be interesting to review in the con
text of the present model the Nester-Witten procedure and the positivity 
property of the associated physical charges [6,22].

4. Null warped AdS black holes

By performing periodic identfications, one can obtain black holes 
starting from warped AdS geometries [23]. For that purpose, we first do 
the following re-definitions:

𝑟 = e−2𝑚𝜌 , 𝑡 = 𝑣 
𝑚
, 𝜙 = 𝑢 

𝑚
, (45)

and choose the free functions 𝑓𝑖 in ℎ given by (32) such that

ℎ(𝑟) = 𝑟𝑧 + 𝛽𝑟+ 𝛼2 , (46)

where 𝛼 and 𝛽 are constants and 𝑧 is dfined in (36). Then the metric 
of the supersymmetric solution (26) becomes

d𝑠2 = 1 
𝑚2

(
d𝑟2

4𝑟2
+ 2𝑟d𝑡d𝜙+ ℎ(𝑟)d𝜙2

)
. (47)

Taking the coordinate 𝜙 periodic (𝜙 ∼ 𝜙+ 2𝜋) and assuming that

𝑧 ≥ 2 , 𝛽 ≥ 2𝛼 , 𝛽 ≥ 0 , 𝛼 ≠ 0 , (48)

the metric (47) describes a black hole with a horizon at 𝑟 = 0 [23--25] 
and possesses two commuting Killing vectors 𝜕𝑡 and 𝜕𝜙 that are null and 
spacelike respectively. The conditions (48) are needed in order for it to 
be physically well-defined [25]. These black holes are in the unitary 
region of the theory (9) provided that

− 1 
𝜂2

< 𝜅𝜏 ≤
1 

𝜂 (1 − 2𝜂)
, (49)

so that the requirement that 𝑧 ≥ 2 is satified.
Note that the Killing spinor that we found earlier (44) is now in

dependent of the 𝜙 coordinate due to the choice of the function ℎ in 

(46) and hence is unaffected by its periodic identfication. Therefore, 
the null warped AdS black hole is a supersymmetric solution of MMSG. 
This might sound surprising, since this black hole has a non-zero entropy 
and associated temperature [25]. However, this notion of temperature 
differs from the Hawking temperature, which itself is zero since the sur
face gravity vanishes:

𝑘𝜈∇𝜈𝑘
𝜇 = 0 , with 𝑘 = 𝜕𝑡 . (50)

As we go to the near horizon limit 𝑟→ 0, ℎ approaches to 𝛼2 and we 
get the so-called self-dual AdS3 as the near horizon geometry [26]. By 
repeating the computation for the Killing spinor above, one sees that in 
this limit there are two solutions:

𝜖1 =
(√

𝑟

0

)
, 𝜖2 =

⎛⎜⎜⎝
2 |𝛼| 𝑡

√
𝑟

1 √
𝑟

⎞⎟⎟⎠ , (51)

such that supersymmetry is enhanced. This is unlike some other types 
of self-dual geometries considered in the literature [26--28].

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to ifluence 
the work reported in this paper.

Acknowledgements

This work is partially supported by a PHC BOSPHORE, project No 
50765SK, by the French Ministry of Europe and Foreign Affairs (MEAE) 
and the Ministry of Higher Education and Research (MESR), and by 
the Scientific and Technological Research Council of Türkiye (Tübitak). 
It is furthermore supported by the Scientific and Technological Re
search Council of Türkiye (Tübitak) project 123N953. The work of JR 
is supported by the Croatian Science Foundation project IP-2022-10
5980 ``Non-relativistic supergravity and applications''. JR and NSD are 
grateful to the Erwin Schrödinger Institute (ESI), Vienna where part of 
this work was done in the framework of the ``Research in Teams'' Pro
gramme.

Data availability

No data was used for the research described in the article.

References

[1] E. Bergshoeff, O. Hohm, W. Merbis, A.J. Routh, P.K. Townsend, Minimal massive 3D 
gravity, Class. Quantum Gravity 31 (2014) 145008, arXiv:1404.2867.

[2] S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories, Phys. 
Rev. Lett. 48 (1982) 975.

[3] S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories, Ann. Phys. 
140 (1982) 372.

[4] N.S. Deger, M. Geiller, J. Rosseel, H. Samtleben, Minimal massive supergravity, Phys. 
Rev. Lett. 129 (2022) 171601, arXiv:2206.00675.

[5] N.S. Deger, M. Geiller, J. Rosseel, H. Samtleben, Minimal massive supergravity and 
new theories of massive gravity, Phys. Rev. D 109 (2024) 086014, arXiv:2312.12387.

[6] G.W. Gibbons, C.N. Pope, E. Sezgin, The general supersymmetric solution of topo
logically massive supergravity, Class. Quantum Gravity 25 (2008) 205005, arXiv:
0807.2613.

[7] S. Deser, J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97.
[8] S. Deser, Cosmological topological supergravity, in: S.M. Christensen (Ed.), Quantum 

Theory of Gravity, Adam Hilger, London, 1984.
[9] N.S. Deger, A. Kaya, H. Samtleben, E. Sezgin, Supersymmetric warped AdS in ex

tended topologically massive supergravity, Nucl. Phys. B 884 (2014) 106, arXiv:
1311.4583.

[10] N.S. Deger, G. Moutsopoulos, Supersymmetric solutions of 𝑁 = (2,0) topologically 
massive supergravity, Class. Quantum Gravity 33 (2016) 155006, arXiv:1602.07263.

[11] G. Alkac, L. Basanisi, E.A. Bergshoeff, D.O. Devecioğlu, M. Ozkan, Supersymmetric 
backgrounds and black holes in  = (1, 1) cosmological new massive supergravity, 
J. High Energy Phys. 10 (2015) 141, arXiv:1507.06928.

[12] N.S. Deger, Z. Nazari, O. Sarioglu, Supersymmetric solutions of  = (1,1) general 
massive supergravity, Phys. Rev. D 97 (2018) 106022, arXiv:1803.06926.

Physics Letters B 860 (2025) 139183 

4 

http://refhub.elsevier.com/S0370-2693(24)00741-X/bib3C4F901DCBD345D47C15F2F5934DB8B8s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib3C4F901DCBD345D47C15F2F5934DB8B8s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibA8C73A30C659E243879BECF408E77E35s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibA8C73A30C659E243879BECF408E77E35s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib4D6E2C76D7AAFC8D80E6C972570EC5A1s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib4D6E2C76D7AAFC8D80E6C972570EC5A1s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibE117F8D64D47697189E9484EDBF1E69Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibE117F8D64D47697189E9484EDBF1E69Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibBCF77E5FBB34E3FC9528B3BD3EBB9BFCs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibBCF77E5FBB34E3FC9528B3BD3EBB9BFCs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibDAF7E55057CE693B3CB95D66E60067C3s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibDAF7E55057CE693B3CB95D66E60067C3s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibDAF7E55057CE693B3CB95D66E60067C3s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib51D3721981748FCA06EA47D1619BA120s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib08A854A2F5C7BA3F160922827F019B07s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib08A854A2F5C7BA3F160922827F019B07s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib7594D2117D0C428260DF980DF7C27740s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib7594D2117D0C428260DF980DF7C27740s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib7594D2117D0C428260DF980DF7C27740s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib83055F132B2A69D41364C2FCA3A58FA2s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib83055F132B2A69D41364C2FCA3A58FA2s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib0D0D6CDEB93223A821232B5716033EA6s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib0D0D6CDEB93223A821232B5716033EA6s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib0D0D6CDEB93223A821232B5716033EA6s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib158448DD563BE98F15996BFEF639B2F2s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib158448DD563BE98F15996BFEF639B2F2s1


N.S. Deger, J. Rosseel and H. Samtleben 

[13] N.S. Deger, C.A. Deral, A. Saha, O. Sarıoğlu, Rotating AdS3×S3 and dyonic strings 
from 3-dimensions, arXiv:2408.03197.

[14] D. Garfinkle, T. Vachaspati, Cosmic string traveling waves, Phys. Rev. D 42 (1990) 
1960.

[15] D. Garfinkle, Black string traveling waves, Phys. Rev. D 46 (1992) 4286, arXiv:gr-
qc/9209002.

[16] M. Alishahiha, M.M. Qaemmaqami, A. Naseh, A. Shirzad, On 3D minimal massive 
gravity, J. High Energy Phys. 12 (2014) 033, arXiv:1409.6146.

[17] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the 
Schrödinger symmetry, Phys. Rev. D 79 (2009) 085006, arXiv:0901.3609.

[18] K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. 
Lett. 101 (2008) 061601, arXiv:0804.4053.

[19] M. Blau, J. Hartong, B. Rollier, Geometry of Schrödinger space-times, global coordi
nates, and harmonic trapping, J. High Energy Phys. 07 (2009) 027, arXiv:0904.3304.

[20] A.S. Arvanitakis, A.J. Routh, P.K. Townsend, Matter coupling in 3D ‘minimal massive 
gravity’, Class. Quantum Gravity 31 (2014) 235012, arXiv:1407.1264.

[21] D.D.K. Chow, C.N. Pope, E. Sezgin, Classfication of solutions in topologically mas
sive gravity, Class. Quantum Gravity 27 (2010) 105001, arXiv:0906.3559.

[22] E. Sezgin, Y. Tanii, Witten-Nester energy in topologically massive gravity, Class. 
Quantum Gravity 26 (2009) 235005, arXiv:0903.3779.

[23] D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, Warped AdS(3) black holes, J. 
High Energy Phys. 03 (2009) 130, arXiv:0807.3040.

[24] G. Clement, Black holes with a null Killing vector in new massive gravity in three 
dimensions, Class. Quantum Gravity 26 (2009) 165002, arXiv:0905.0553.

[25] D. Anninos, G. Compere, S. de Buyl, S. Detournay, M. Guica, The curious case of null 
warped space, J. High Energy Phys. 11 (2010) 119, arXiv:1005.4072.

[26] O. Coussaert, M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a neg
ative cosmological constant, in: C. Teitelboim, J. Zanelli (Eds.), The Black Hole 25 
Years After, World Scientific, Singapore, 1998, arXiv:hep-th/9407181.

[27] V. Balasubramanian, A. Naqvi, J. Simon, A multiboundary AdS orbifold and DLCQ 
holography: a universal holographic description of extremal black hole horizons, J. 
High Energy Phys. 08 (2004) 023, arXiv:hep-th/0311237.

[28] E. Ó Colgáin, H. Yavartanoo, Banados and SUSY: on supersymmetry and minimal 
surfaces of locally AdS3 geometries, Class. Quantum Gravity 34 (2017) 095008, 
arXiv:1610.05638.

Physics Letters B 860 (2025) 139183 

5 

http://refhub.elsevier.com/S0370-2693(24)00741-X/bibB552B3A807C075ADBE55E759BF280013s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibB552B3A807C075ADBE55E759BF280013s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibF6F4DA31A33CEE8784C0A5C716A7F5F1s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibF6F4DA31A33CEE8784C0A5C716A7F5F1s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib2E1A44F6BFAE02096D2DD596CF21BE18s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib2E1A44F6BFAE02096D2DD596CF21BE18s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib9ED0DF7584E13F83CA697AC8F485848Cs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib9ED0DF7584E13F83CA697AC8F485848Cs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibE5DB147F0913B8D4BEE0720AA098257Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibE5DB147F0913B8D4BEE0720AA098257Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib9BE60839DFE812DF792ACDF9E301E3C3s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib9BE60839DFE812DF792ACDF9E301E3C3s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibF58173A0483E1F3EFBDF75AA890DD120s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibF58173A0483E1F3EFBDF75AA890DD120s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibAE9F88BABAD7B362D2AC8BAF8FB19950s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibAE9F88BABAD7B362D2AC8BAF8FB19950s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib0CB48FB5AD4E0F63345EDBC258A48BFEs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib0CB48FB5AD4E0F63345EDBC258A48BFEs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib34E80F8E0A1477FCC4F0E0F0F93D991Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib34E80F8E0A1477FCC4F0E0F0F93D991Ds1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib38E1B20677950F2CF7F1081945525B54s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib38E1B20677950F2CF7F1081945525B54s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib7356C1765425E9A1C302CD0BE069995Cs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib7356C1765425E9A1C302CD0BE069995Cs1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibEB4848444E2A43DC4D0268D093D3B29Es1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibEB4848444E2A43DC4D0268D093D3B29Es1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibFC58CBBDE7BFD9342C10B47D2F32D048s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibFC58CBBDE7BFD9342C10B47D2F32D048s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bibFC58CBBDE7BFD9342C10B47D2F32D048s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib54A7FFAA324F3DA0159D7AB7CCA58179s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib54A7FFAA324F3DA0159D7AB7CCA58179s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib54A7FFAA324F3DA0159D7AB7CCA58179s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib6E0E8BD065ADF63E80F15DFB48BA7746s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib6E0E8BD065ADF63E80F15DFB48BA7746s1
http://refhub.elsevier.com/S0370-2693(24)00741-X/bib6E0E8BD065ADF63E80F15DFB48BA7746s1

	The general supersymmetric solution of minimal massive supergravity
	1 Introduction
	2 Minimal massive supergravity
	3 All supersymmetric solutions of MMSG
	4 Null warped AdS black holes
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


