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Minimal massive supergravity is the supersymmetric extension of minimal massive gravity in three dimensions.

The theory admits a supersymmetric anti-de Sitter vacuum around which the propagating modes of spin 2 and
3/2 combine into a supermultiplet. In this letter, we determine the most general supersymmetric solution of
the theory by analyzing its Killing spinor equations. Just as for topologically massive supergravity, the general
supersymmetric solution is a plane wave with a null Killing vector field. As a particular subclass we find null-
warped AdS; spaces and, with proper periodic identifications, null-warped AdS; black holes.

1. Introduction

Minimal massive gravity (MMG) in three dimensions is an intriguing
example of massive gravity [1]. It is a deformation of topologically mas-
sive gravity (TMG) [2,3] by a term quadratic in the Schouten tensor. The
model still admits an Anti-de Sitter (AdS) vacuum, but as a consequence
of the deformation it overcomes the unitarity problems from which most
other 3D massive gravity models suffer: there is a region in parame-
ter space of MMG in which the massive spin 2 mode around the AdS
vacuum is neither a ghost nor tachyonic, while both Brown-Henneaux
central charges remain positive. That is, both bulk and boundary theory
are unitary. The supersymmetric extension to minimal massive super-
gravity (MMSG) has been constructed recently [4,5]. In particular, it
was found that every MMG model carrying unitary AdS vacua admits a
supersymmetric extension in which these AdS vacua are supersymmet-
ric. Accordingly, the propagating modes of spin 2 and 3/2 around the
vacuum combine into an AdS supermultiplet of the dual superconformal
field theory.

In this letter, we give a systematic study of the Killing spinor equa-
tions of MMSG in order to identify its most general supersymmetric solu-
tion. The analysis closely follows the lines of [6] for topologically mas-
sive supergravity (TMSG) [7,8] and interestingly reduces to the same
type of differential equation. Accordingly, the supersymmetric solutions
of MMSG are in correspondence with the supersymmetric solutions of
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TMSG and given by plane waves with a null Killing vector field. A par-
ticular subclass thereof corresponds to null warped AdS; spaces. Such
solutions have appeared before in the analysis of supersymmetric solu-
tions of A" =(1,1) and N = (2,0) TMSG [9,10], respectively, as well as
among the supersymmetric solutions of new massive gravity [11], gen-
eral massive gravity [12], and N = (4,0), SO(4) gauged supergravity
[13].

The rest of this letter is organized as follows. In section 2 we review
the structure of MMG and its supersymmetric extensions. In section 3,
we analyze its Killing spinor equations and derive the general supersym-
metric solution which is a plane wave with a null Killing vector field.
In turn, we find that any such solution is supersymmetric in one of the
supersymmetric extensions of MMG. A particular subclass yields null-
warped AdS; spaces. In section 4, we discuss the resulting null-warped
AdS; black holes upon proper periodic identifications.

2. Minimal massive supergravity

A convenient manner to formulate minimal massive supergravity
(MMSG) is in terms of a dreibein e y" , a one-form w”” and two grav-
itino fields y,, and ¥ . Its Lagrangian is up to an overall factor explicitly
given by [4]

Lle,w,y,¥] = s”””(eu“R[a}]W’a + Aeabceu"evbeﬂc + % eu“T[w]Vpa>
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where Lg is the SO(2,1) Chern-Simons Lagrangian for the connection
w a

"
1
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The Lagrangian (1) should be viewed as a second order Lagrangian in
e,?, with the spin connection w,“ dependent on ¢,* and y,, in the fol-
lowing way:

o 1
0= a_Zepzr‘r

_ 1 _
" " epa Wo'}/yy/r + 3 et eya II/o'yplI/r > (3)

where @, is the torsionless Levi-Civita spin connection:

o _ abc v, p dlbcdavp
@, =—e"e, e el e, +§e efee "o e @

The curvature of w,* and torsion of @, that appear in the first line of

(1) are defined by
Rl®],,* :=20,0," + s“bcw”ba)vc ,
Tlwl,, " :=2D[w],e," = 20,0, + 2%, @y, e, )" . )

while spinor covariant derivatives are defined as

D[w],e=0,€+ %a)yayae, Dlw],e=0,¢+ %wﬂ"yae. (6)

The Lagrangian (1) furthermore depends on four parameters 4, 7, k and
n and it is assumed that k= # 0. Actually, only three of these parameters
are independent, since there exists the following relation among them

2
1 1 T 1
A=— — ) == - — ). 7
12 <nr+ m<> 3 <r1r nrf) @

Up to quartic fermion terms, the Lagrangian (1) is invariant under the
following supersymmetry transformation rules:

1_
bee,’ = 3 i,
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MMSG describes the propagation of a single massive spin 2 mode,
along with a fermionic superpartner of spin 3/2. Remarkably, when
considered around an AdS vacuum, there exists a region in its parame-
ter space where MMSG is unitary, in the sense that the massive modes
that are propagated are not tachyonic, nor ghost-like and that the cen-
tral charges of its asymptotic Virasoro X Virasoro symmetry algebra are
both positive. For supersymmetric AdS vacua, this unitarity region can,
after changing the overall sign of the Lagrangian (1), be succinctly de-
scribed by the conditions:

n<0, kT <0. )

We refer to [4,5] for a detailed analysis of the unitarity region around
arbitrary, not necessarily supersymmetric AdS vacua.

In the following we will be interested in supersymmetric solutions
of MMSG, with vanishing fermions. Let us therefore comment on the
bosonic equation of motion of the model. The bosonic part of the La-
grangian (1) is at most second order in derivatives for two fields e, “ and
@, . In the equations of motion, the latter field can however be elim-

inated to yield a third-order bosonic equation of motion for the metric
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field, known as a ‘third-way consistent’ equation, which cannot be de-
rived from an action solely expressed in terms of the metric. Specifically,

from variation w.r.t. ¢,°, one finds the following solution for w,*

o 1 31
wﬂ” = a)ﬂ" - (Sﬂve"“ + 7e,,“> s (10)

in terms of the Schouten tensor S, . Using this in the equation of motion
of w,? then leads to the following equation for the metric

31 T 9% 1 1
(1+35) o= (555 ) o 16 = a

where G, is the Einstein tensor, C,, the Cotton tensor and we have
denoted

= 1E0er SO ST 12)

By performing the parameter redefinitions

_ T 31 = tfr 942 u
=—=(1+=, AN=—|—-+"—=], =—, 13
c M( +272> 0 M<K+4r2> 14 7 13

the equation of motion (11) yields the original form of the MMG equa-
tion [1]
_ — 1 14
aGW+A0gW+—CW=——2JW. (14
U U

In order to investigate supersymmetry of our solutions, we will need
the Killing spinor equations that result from setting the supersymmetry
variations of the gravitini (along with the gravitini themselves) equal to
zero, i.e.

. m
Dio] e+ Ey”€=0, (15a)

1
D[w]ﬂe— Enryﬂezo, (15b)

where we have defined

m:—l (m'+i>. (16)
2 nK

In what follows, we will work in the formulation of the equations of
motion, in which w”“ has been eliminated by means of (10) to yield
the third-order equation (11). The second Killing spinor equation (15b)

is then implied by the first one (15a), as follows from the identity

1 m o m
Dlwl,e = 3ty e = (1- Z> (Dlé], e+ Ey”€>

- zl—ryvyuev”"D[c?)]ﬂ (D[d’)]ae + %yce) R a7z
where it is understood that w,“ is given by (10). When analyzing the
Killing spinor equations and their consequences, it will thus suffice to
only consider the first equation (15a).

For maximally symmetric solutions of the model for which G,, =
Agw, where A is the cosmological constant, the field equation (11) im-
plies

3
A2+ (@47 + 6N+ <9/12+ 4i> =0, 18)
K
whose roots are
Asusy =-m’, Apg =-m’ +21 <(’I_2)T+ L) . (19)
nKk
Only the AdS (or Minkowski) background corresponding to Agg, pre-
serves supersymmetry (15a). Chiral points of the theory are those for
which one of the two central charges of the dual theory vanishes. For

the supersymmetric AdS vacuum this happens when [5]:

(m—Dmxr+1)=0. (20)
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Let us finally mention that changing the sign of m, that is sending
m — —m, flips the supersymmetry parameter 7 as

g —— @D
nKT

in the above solution [5]. Also, it is worth pointing out that for A, <0,

there is another pair of roots 7 of (7) (related by (21)) such that

2
A =—it=—t (s L) 22)
ns 4 fix

In other words, every bosonic MMG model admitting two AdS vacua
has four different supersymmetric extensions with fermionic couplings
defined by #, 7 and their images under (21), respectively, such that
each AdS vacuum is supersymmetric in two of the extensions and non-
supersymmetric in the other two.

3. All supersymmetric solutions of MMSG

In order to find general supersymmetric solutions of MMSG, we fol-
low the reasoning of [6] for the case of topologically massive super-
gravity (TMSG) [7,8]. The bosonic part of the TMSG field equation is of
the form (14) with y =0, and its supersymmetry transformation equals
(15a). Assuming the existence of a solution' of the Killing spinor equa-
tion (15a), one can construct the vector

KH =¢yte. (23)

The Fierz identity then implies that K# is a null vector:

K"K, =0. (24)

From (15a) it also readily follows that

— 1
V”KV —mewpK =

e”""dep =-2mK*, (25)
so that in particular V(,K,, = 0 and one thus concludes that K* is a
null Killing vector. The integrability conditions for the Killing spinor
equation (15a) are identical with those found in [6]. Following [6], one
can then choose an adapted coordinate v (i.e., a coordinate v in which

K =0/0v) and use (25) to bring the metric to the following form

ds? = dp? + 2e 2" dudv + h(u, p)du® . (26)
For this metric, the non-zero components of the Einstein tensor are given
by

G, =m2e= 2", G, =m?, 27)

1
Guu = m2h - mh, - Eh” ’ uv PP

where prime ’ denotes a derivative with respect to p. The non-zero com-
ponent of the Cotton tensor reads:

3 1
C,=—-m*h — Emh” - Eh”’ ) (28)
For the tensor J,, (12), one finds the following non-zero components:
2
m 1 _ 1
JW=T(m2h—2mh'—h”) ) JuU=Zm4e 2mp’ JW=Zm4.

(29)

The (p, p) or (u,v) components of the bosonic field equations (14) then
reduce to the following relation between the parameters of the model

Fm? + Ay + —Lm* =0, (30)
4u?

which is an identity, upon using (7), (13), (16). The (u,u) component of
(14) becomes

/’l'"+<2m—r—i>h”—2m<r+L> n=0. (31)
nK nKk

L This solution for ¢ is taken to be a commuting spinor.
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Assuming separation of variables, the most general solution for 4 is then
given by

b,y = el >”f1 W)+ 72" fr(u) + f3(u). (32)

It was shown in [6] that the last two terms are locally redundant, in the
sense that they can be removed by coordinate transformations. How-
ever, they may be important globally. These terms can actually be gen-
erated from the solution without them by using the Garfinkle-Vachaspati
method [14,15]. It requires the solution to possess a null Killing vector
K* and amounts to finding two functions y and Q that satisfy

9K, = K,0,/InQ,

K"0,w =0, Ow =0. (33)

Then, the following metric is another exact solution with the same mat-
ter fields

guv =8uv + QWK}AKV . 34)

For our solution, one finds

Q=e2",  y=fru)+ f3(we. (35)

It is interesting to note that the form of the general supersymmetric
solution is exactly the same as that of TMSG [6] despite the extra J-
term in the MMSG field equation (14). Taking the TMSG limit (y —
0,6 = o, m— my) as defined in [5], the exponent of the first term goes
to (7 + r,Lx) = (=mgy —op).

Wave solutions of the form (32) were found and discussed in bosonic
MMG in [16]. In the above derivation, we however fixed an orienta-
tion (by taking €912 = _1 as in [6]), which explicitly appears in (25). In
MMG, one can express the solution in the opposite orientation as well
by replacing the coefficient of the Cotton tensor in the field equation
(namely y in TMSG and = in MMSG) by minus itself in the solution, as
was pointed out in [6]. In analogy to the observation of [6] in TMG, we
find here that all MMG solutions of type (26) with a null Killing vec-
tor are supersymmetric in one of the supersymmetric extensions of the
model, discussed above in (22).

When all f;’s in (32) are constant, this spacetime corresponds to null
z-warped AdS with

1
RO S (S U N LS (36)
2m nK 1+n%kt
When z=2, i.e.
1 1
T+ —=—4m = 2n—-1)+—=0, (37)
nk nk

the solution becomes null warped AdS, also known as Schrodinger space-
time [17-19]. Warped AdS solutions of MMG were also discussed in [20].

There are four special points in parameter space, where (32) is no
longer the most general solution of (31). This is because of the fact
that some of the exponentials appearing in (32) coincide. These spe-
cial points are given by:

1. 7+ WLK = —2m and m # 0: This implies that # = 1, which is a chiral
point (20). The most general solution of (31) is now given by:

h(u, p) = pe™>" f1(u) +e72" fr(u) + f3(u). (38)
These solutions do not lie in the unitarity region (9).

2.+ ”LK =0 and m # 0: This corresponds to the chiral point yxz = —1
(20). The most general solution of (31) is then given by:

h(u, p) = pf (W) + €72 f,) + f3(w). (39)

These solutions do not lie in the unitarity region (9).
3. m=0 and 5kt # —1: In this case Ay =0 in the main field equation
(14). At this point, the most general solution of (31) reads:
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1

h(u, p) = o5 >"f] W)+ pfrw) + f3(w). (40)

The vacuum solution in this case is Minkowski spacetime.
4. m=0 and nxt = —1: In this case # = 1 and 5, = Ay =0 in the main
field equation (14). Here, the most general solution of (31) is the

following:

h(u, p) = p* f1W) + p f,) + f3(u). (41

The vacuum solution corresponds to Minkowski spacetime.

In all of these special cases, the last two terms of the solution for A
are locally redundant [6,21] and can be generated using the Garfinkle-
Vachaspati method [14,15] described above.

In order to explicitly find the Killing spinor, we need to evaluate the
spin connection (4). We choose the following dreibein for the metric
(26):

& =e e Py, el =e e Pdv +efdu, 2 =dr, (42)

where h = e?’. We then find the following spin connection components:

@° =me 2" Pdp — P, pdu, o' =me 2"~ Pdy — (m+9,p) efdu,

o’ =0,pdu+ (m+9,p)dr. 43)

Choosing yy =io,, y; = 0| and y, = 03, where ¢; are the Pauli matrices,
it is then easily checked that

e=h"V4e e, (44)

solves the Killing spinor equation (15a) where ¢, is a constant spinor
satisfying (o) +io,)ey = 0. So, in general these solutions are 1/2 super-
symmetric except for AdS; (that is when all f;’s are zero in (32)) which
is fully supersymmetric.

Let us finally note that it would be interesting to review in the con-
text of the present model the Nester-Witten procedure and the positivity
property of the associated physical charges [6,22].

4. Null warped AdS black holes

By performing periodic identifications, one can obtain black holes
starting from warped AdS geometries [23]. For that purpose, we first do
the following re-definitions:

— e—Zmp ,

r=—, ¢=£’ (45)
m m

’
and choose the free functions f; in & given by (32) such that

h(r)=r* + fr+a?, (46)

where a and f are constants and z is defined in (36). Then the metric
of the supersymmetric solution (26) becomes
2
ds? = L (dL +2rdrde + h(r)d¢2> . 47)
m2 \ 4r2

Taking the coordinate ¢ periodic (¢ ~ ¢p + 27) and assuming that

z>2, p>2a, >0, a#0, (48)

the metric (47) describes a black hole with a horizon at r =0 [23-25]
and possesses two commuting Killing vectors d, and d,, that are null and
spacelike respectively. The conditions (48) are needed in order for it to
be physically well-defined [25]. These black holes are in the unitary
region of the theory (9) provided that

1 1
—— <KkTL —mM8,
n? n(1—-2n)

so that the requirement that z > 2 is satisfied.
Note that the Killing spinor that we found earlier (44) is now in-
dependent of the ¢ coordinate due to the choice of the function £ in

(49)
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(46) and hence is unaffected by its periodic identification. Therefore,
the null warped AdS black hole is a supersymmetric solution of MMSG.
This might sound surprising, since this black hole has a non-zero entropy
and associated temperature [25]. However, this notion of temperature
differs from the Hawking temperature, which itself is zero since the sur-
face gravity vanishes:

K'V k' =0, with k=9,. (50)

As we go to the near horizon limit » — 0, 4 approaches to a? and we
get the so-called self-dual AdS; as the near horizon geometry [26]. By

repeating the computation for the Killing spinor above, one sees that in
this limit there are two solutions:

2
=1/r
eﬁ(ﬁ)’ €= '“'1\[ : (51)

0

\f
such that supersymmetry is enhanced. This is unlike some other types
of self-dual geometries considered in the literature [26-28].
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