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ABSTRACT

Substantial advances in livestock traits have been
achieved primarily through selection strategies targeting
variation in the nuclear genome, with little attention giv-
en to mitogenome variation. We analyzed the influence
of the mitogenome on milk production traits of Holstein
cattle in Croatia based on strategically generated next-
generation sequencing data for 109 cows pedigree-linked
to 7,115 milk production records (milk, fat, and protein
yield) from 3,006 cows (first 5 lactations). Because
little is known about the biology of the relationship be-
tween mitogenome variation and production traits, our
quantitative genetic modeling was complex. Thus, the
proportion of total variance explained by mitogenome
inheritance was estimated using 5 different models: (1)
a cytoplasmic model with maternal lineages (CYTO), (2)
a haplotypic model with mitogenome sequences (HAP-
LO), (3) an amino acid model with unique amino acid
sequences (AMINO), (4) an evolutionary model based
on a phylogenetic analysis using Bayesian Evolutionary
Analysis Sampling Trees phylogenetic analysis (EVOL),
and (5) a mitogenome SNP model (SNPmt). The poly-
genic autosomal and X chromosome additive genetic
effects based on pedigree were modeled, together with
the effects of herd-year-season interaction, permanent
environment, location, and age at first calving. The es-
timated proportions of phenotypic variance explained
by mitogenome in 4 different models (CYTO, HAPLO,
AMINO, and SNPmt) were found to be substantial given
the size of mitogenome, ranging from 5% to 7% for all 3
milk traits. At the same time, a negligible proportion of
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the phenotypic variance was explained by mitogenome
with the EVOL model. Similarly, in all models, no pro-
portion of phenotypic variance was explained by the X
chromosome. Although our results should be confirmed
in other dairy cattle populations, including a large num-
ber of sequenced mitogenomes and nuclear genomes, the
potential of utilizing mitogenome information in animal
breeding is promising, especially as the acquisition of
complete genome sequences becomes cost-effective.
Key words: Holstein cattle, milk production traits,
complete mitogenome, next-generation sequencing,
variance components

INTRODUCTION

Domestic cattle have profoundly influenced develop-
ment of modern human societies, consolidating their sta-
tus as the world’s most economically important domestic
animal. This central importance is particularly evident in
the increasing demand for high-yielding breeds, with the
emphasis on dairy cows. Over the last century, the milk
yield per lactation has increased many times over (Britt
etal., 2018, 2021), emphasizing the indispensable role of
these animals in satisfying human needs and promoting
agricultural progress.

Meeting the elevated production demands of high-
producing dairy cows requires a significant amount of
energy, which emphasizes the importance of bioenergetic
homeostasis and lactogenesis in adapting to fluctuations
in energy requirements and physiological processes dur-
ing the lactation period (Cheng and Ristow, 2013; Wei-
kard and Kuehn, 2018). The pivotal role in maintaining
metabolic balance, essential for high milk production,
lies with the mitochondria, the double-membrane-bound,
semi-autonomous organelles in the cytoplasm of cells.
The mitochondria are often referred to as the “power-
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house” of cells and make a significant contribution
by generating around 90% of adenosine triphosphate
through oxidative phosphorylation from carbohydrates
and fatty acids (Wilson et al., 1985; Hadsell et al., 2011;
Cheng and Ristow, 2013; Favorit et al., 2021). The im-
portance of mitochondria is particularly evident when
the high energy requirements for milk production com-
pete for resources, potentially disrupting reproductive
processes, resilience, and overall health (Monzel et al.,
2024). In addition, the role of mitochondria goes beyond
energy provision and includes multifunctional tasks such
as calcium signaling, regulation of membrane potential,
control of cell metabolism, and involvement in apoptosis
(Ballard and Melvin, 2010; Monzel et al., 2024).

Each cell contains several hundred to thousands of
mitochondria, the inheritance of which in cattle, as in
other mammals, is exclusively along the maternal lin-
eage (Hutchison et al., 1974). The cattle mitogenome is
a small circular molecule spanning 16,338 bp in length
(Anderson et al., 1982) that is characterized by semi-
conservative self-replication and exhibits the unique
property of rapid evolution without recombination, as
highlighted in many studies (Harrison, 1989; Javonillo
et al., 2010; Prosdocimi et al., 2012; Castro Paz et al.,
2014). It consists of 37 genes without introns, 13 of which
encode respiratory chain proteins involved in energy
metabolism, 2 ribosomal and 22 transfer RNAs essential
for protein synthesis (Boore, 1999; Wallace et al., 1999),
and a noncoding region is known as the control region or
D-loop. Variation in the mitogenome is represented by
unique sequences or haplotypes that have been shaped by
mutations, drift and selection over a long period of time
and passed on by maternal ancestors. According to their
phylogenetic origin, unique cattle haplotypes are catego-
rized into several highly divergent haplogroups (I, C, R,
P, Q, Ty, Ty, T3, Ty, and Ts), which are commonly used
in domestication studies (Bradley et al., 1996; Achilli et
al., 2008; Zhang et al., 2013; Verdugo et al., 2019) and
diversity studies (Cubric-Curik et al., 2022; Dorji et al.,
2022).

The effects of mitogenome variation on complex traits
in humans are closely related to human health and have
been well-investigated in many studies (Wallace, 2005,
2015; Gorman et al., 2016). In particular, various mitoge-
nome mutations or haplotypes have been associated with
several human diseases, e.g., cancer (Shen et al., 2011),
diabetes (Liou et al., 2012), Alzheimer’s disease (Ridge
et al., 2012), Parkinson’s disease (Ghezzi et al., 2005),
and Leber hereditary optic neuropathy (Yu-Wai-Man et
al., 2009).

In contrast, the effects of mitogenome variation in cattle
have been studied in the context of production traits, but
the first disease caused by a mutation in the mitogenome
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has only recently been reported (Novosel et al., 2022).
However, most studies evaluating the effects of mitoge-
nome variation on economically important traits such as
milk production were conducted in the late 20th century.
These studies were based on cytoplasmic models, which
assume that all observed maternal lineages in the pedi-
gree have different mitogenome haplotypes (Bell et al.,
1985; Kennedy, 1986; Schutz et al., 1992; Boettcher and
Gibson, 1997; Albuquerque et al., 1998; Roughsedge et
al., 1999). In these studies, the cytoplasmic effects ex-
plained from 0% to 10% of the phenotypic variability. In
addition, Boettcher et al. (1996b) simulated the effects of
maternal lineages from the normal distribution, analyzed
the data with fixed and random models, and concluded
that random (cytoplasmic) models estimate the effects of
the different maternal lineages more accurately. On the
other hand, there are not many studies in which the ef-
fects of mitogenome polymorphisms and milk production
were estimated using genomic data because sequence
data were available only for short regions such as D-
loop, due to technical limitations in obtaining complete
mitogenomes for large numbers of individuals (Brown
et al., 1989; Schutz et al., 1994; Boettcher et al., 1996a;
Qin et al., 2012). Although nuclear genome information
is now widely used to estimate breeding values (Boich-
ard et al., 2015; Weigel et al., 2017; Cole and VanRaden,
2018), the role of the complete mitogenome in improving
milk production has not yet been fully explored. Recent
technological advances, particularly the emergence of
next-generation sequencing, have opened up the possibil-
ity of efficiently genotyping large numbers of complete
mitogenomes at low cost. Moreover, informative SNPs
of the mitogenome have been integrated into SNP arrays
(Brajkovic et al., 2023) or might be extracted from whole
genome sequences with low coverage (Sanglard et al.,
2023). These resources provide a solid foundation for
further research on the utilization of complete mitoge-
nome information in dairy cattle breeding.

The main objective of this study was to evaluate the
effects of inherited mitochondria on milk production
traits in cattle using the complete mitogenome sequence
information. Analyses were performed on Croatian Hol-
stein cows, with a focus on a comprehensive modeling
of variation across the complete mitogenome. More spe-
cifically, our focus was on estimating the proportion of
phenotypic variance explained by mitogenome variation
(m?) using 5 different models: (1) a cytoplasmic model
with maternal lineages (CYTO), (2) a haplotypic model
with mitogenome sequences (HAPLO), (3) an amino
acid model with unique amino acid sequences (AMINO),
(4) an evolutionary model (EVOL) based on a phyloge-
netic analysis using Bayesian evolutionary analysis sam-
pling trees (BEAST), and (5) a mitogenome SNP model
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(SNPmt). In assessing the relationship between inherited
mitochondrial variation and milk production, we are un-
aware of a single study that has used similarly complex
modeling while utilizing complete mitogenome informa-
tion on a large scale. Furthermore, our decomposition of
genetic variance into variance components within and
between mitogenome regions is novel and opens new
perspectives for analyzing the effects of nonrecombining
mitogenome polymorphism on economically important
production traits.

MATERIALS AND METHODS
Data and Sampling Strategy of Maternal Lineages

Pedigree and lactation data of Holstein cattle were pro-
vided by the Croatian Agency for Agriculture and Food
(Zagreb, Croatia), a national institution responsible for
milk recording and estimation of genetic parameters. For
pedigree verification, sampling strategy, and maternal
lincage imputation, MaGelLan 1.0 (Maternal Geneal-
ogy Lineage Analyzer) software (Ristov et al., 2016)
was used to strategically select 109 Holstein cows from
20,973 lactating animals based on the 2016 report, with
the aim that the resulting maternal lineage coverage is as
diverse as possible. The 109 Holstein cows included in
the sample thus represent 109 maternal pedigree lineages
according to the pedigree data and comprise a total of
3,040 individuals with 7,576 records within the first 10
lactations, with each maternal pedigree lineage compris-
ing 10 to 74 individuals. The full pedigree for our 3,040
individuals consisted of 6,336 related individuals. The
descriptive statistics for milk production traits over the
first 5 lactations (305 d) used in the repeatability model,
comprising 3,006 individuals and resulting in a total of
7,115 records, are presented in Table 1.
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Figure 1. Geographical representation of the samples collected in
Croatia. Blue circles (real) represent the location of the sampled farms
where milk or hair was collected covering 109 maternal lineages or mi-
togenomes, and the orange circles (imputed) represent the location of the
farms for all cows and their milk records used in the analyses based on
pedigree imputation of the previously collected 109 mitogenomes to all
animals within the maternal lineages.

Sampling Description

Milk, hair, and tissue samples were collected from
small (10-30 cows), medium (30— 100 cows), and large
(more than 100 cows) farms registered with the Minis-
try of Agriculture (Zagreb, Croatia). The samples were
distributed across 7 counties and 40 farms in Croatia
(Figure 1). A total of 109 samples were collected, includ-
ing 86 milk samples, 22 hair samples, and one ear tissue
sample. A strategy for the collection of milk samples as
a noninvasive method, taking into account the required

Table 1. Descriptive statistics for milk production traits in Croatian Holstein cattle

Lactation Variable (kg) N Mean SD Minimum Maximum
1 Milk 2,390 6,733 1,582 1,673 11,980
Fat 2,389 258 65 83 589
Protein 2,388 220 52 82 386
2 Milk 1,984 7,440 1,868 1,537 11,960
Fat 2,020 291 82 81 598
Protein 2,019 247 62 85 447
3 Milk 1,336 7,482 1,916 2,201 11,982
Fat 1,360 293 84 89 586
Protein 1,359 246 64 91 458
4 Milk 835 7,344 2,012 1,770 11,995
Fat 850 288 87 94 581
Protein 849 241 66 82 418
5 Milk 484 7,168 1,968 2,010 11,962
Fat 488 277 83 81 515
Protein 486 232 62 83 428
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amount of milk, storage temperature, liquid or pelletized
form, and storage time for the extraction of good quality
DNA, is described in Brajkovic et al. (2018).

Molecular Genetic Analyses
and Mitogenome Diversity

The molecular genetic analysis and software with in-
formation on (1) DNA isolation, (2) mitogenome ampli-
fication by 3-step PCR, (3) DNA library preparation, (4)
sequencing platform, (5) the bioinformatic analysis of the
Fastq sequence, (6) the calculation of the mitogenome
depth and breadth of coverage, and (7) the list of National
Center for Biotechnology Information (NCBI) GenBank
accession numbers are presented in our phylogenetic
meta-analysis of the bovine mitogenome (Cubric-Curik
et al., 2022) and in Supplemental Table S1 (see Notes).

The diversity of the complete mitogenome and the
diversity of 27 functional regions were summarized with
the number of variable sites (S), the total number of
mutations (eta), the nucleotide diversity per site (), the
average number of nucleotide differences (k), the num-
ber of haplotypes (h), and the haplotype (gene) diversity
(Hd). The summary of genetic parameters was calculated
using DNAsp v6 (Rozas et al., 2017) and the software
Arlequin v. 3.5.2.2 (Excoffier and Lischer, 2010).

Haplotype Construction, Classification,
and Phylogenetic Analysis

To test the influence of mitogenome polymorphisms
on phenotypic variance in milk traits (milk, fat, and
protein yield) of Holstein cattle, 3 types of haplotypes
or haplogroups were used. First, mitogenome haplotypes
were constructed based on all variable sites of the entire
nucleotide sequences. Analyses were performed using
Clustal Omega v1.2.2 software (Sievers et al., 2011),
MEGA7 software (Kumar et al., 2016), and DNAsp v6
software (Rozas et al., 2017; see also Supplemental Table
S1). Second, amino acid haplotypes were constructed
based on a sequence of 3,828 amino acids translated from
a nucleic acid sequence of 11,484 bp and comprising 13
protein-coding mitogenome regions with a total of 59
variable sites. Analyses were performed using MEGA7
software (Kumar et al., 2016) and SAS (v9.4; SAS Insti-
tute, 2012; see also Supplemental Table S1).

Third, evolutionary haplogroups of Holstein mitoge-
nomes were formed based on an Markov chain Monte
Carlo Bayesian evolutionary analysis performed using
the BEAST v1.4.3 software package (Suchard et al.,
2018) as part of a comprehensive phylogenetic meta-
analysis of cattle described in Cubric-Curik et al. (2022).
The 109 Holstein mitogenomes were grouped into 10
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subclades representing evolutionary haplogroups (see
Supplemental Table S1 for more details).

To better understand the origin of mitogenome haplo-
types and their estimated effect on milk production traits,
we classified our mitogenomes into specific haplogroups
using the MitoToolPy v1.0 program (Peng et al., 2015;
Supplemental Table S1, column “MTP”), which included
278 mitogenomes of the genus Bos as a reference base for
the determination of haplogroups (266 for Bos taurus, 2
for Bos primigenius and 10 for Bos indicus). To compre-
hensively analyze our Holstein mitogenomes in a broader
context, a median joining network (Bandelt et al., 1999)
was constructed using PopArt v1.7 (Leigh and Bryant,
2015) to visualize the phylogenetic relationship with an
additional 70 nucleotide sequences (Supplemental Table
S2, see Notes) from the NCBI GenBank (Clark et al.,
2016), representing 62 haplotypes distributed across 8
distinct haplogroups (T, T,, T3, T4, Ts, P, Q, R). Arleqin
v3.5.2.2 software (Excoffier and Lischer, 2010) was used
to create the haplotype frequency matrix for PopArt v1.7
(Leigh and Bryant, 2015) input.

Quantitative Genetic Analyses

We employed 5 different models to estimate the mag-
nitude of the association between mitogenomes and milk
production traits. In each of the 5 models (CYTO, HAP-
LO, AMINO, EVOL, and SNPmt) we applied a Bayes-
ian repeatability animal model that included the first 5
lactation records. This comprehensive analysis included
3 evaluated traits: milk, fat, and protein yield, resulting
in a total of 15 assessments across 5 models. Our model
can be described as follows:

y=Xb+Zc+Zs+Z(a+tx+m+p)te,

where y is n, x I vector of n, = 7,115 milk, fat, and pro-
tein 305-d yields (standardized to zero mean and unit
variance); X is an n, x n, design matrix for the n, = 12
effects of the overall mean, the interaction between the
number of calving and age at calving covariate and b is
the corresponding vector of effects; Z is an n, x n, de-
sign matrix for n, = 2,654 contemporary groups defined

as herd-year-season effects ¢ ~N(0, Iaf), where the calv-
ing seasons within a year were defined as spring (March
to May), summer (June to August), autumn (September
to November), and winter (December to February); Z; is
an n, X n; design matrix for n, = 807 herd location (spa-

tial) effects s ~N[0,S(af,p)}, with S being a Matérn cova-
riance function based on Euclidean distances between

the herd locations and parameterized with variance oz
and range p (see Selle et al., 2020 and references therein
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for further details); Z; is an n, X n; design matrix for n; =
6,336 individual animal effects with the following com-

ponents: a ~N(0, Aaz) the additive genetic effect of auto-

somal DNA with pedigree-relationship matrix A (Hen-
derson, 1976); x ~N(0, Xai) the additive genetic effect of

X chromosome DNA with pedigree-relationship matrix
X (Grossman and Eisen, 1989; Fernando and Grossman,
1990); m is the additive genetic effect of mitochondrial
DNA modeled with different assumptions described be-

low; p ~N(0, 10129) is the permanent environmental effect;

and e ~N(0, Iof) is the residual; and I represents the iden-

tity matrices of the corresponding dimensions.

The 5 models differed in their representation of mi-
togenome effects. Mitogenome is a circular haplotype, so
we denote the effect of differently defined mitogenome
haplotypes with h,,, where subscript m denotes a model.
In the CYTO model, the mitogenome effects were mod-
eled by considering the effect of 109 maternal pedigree
lineages (h.), which were assumed to be independent:

m = Z_ h., where h, ~N(0, Ihcazc) and Z,. is mapping cows’

mitochondrial effect to their maternal pedigree linecage
effect. The HAPLO model fitted the effect of 96 unique
complete mitogenome haplotype sequences (hy,): m =

Zhhh’ where hh ~

mitochondrial effect to their mitogenome haplotype ef-
fect, assuming that different nucleotide cbinations form
different haplotypes that influence mitochondrial effi-
ciency and consequently milk production. This is the
same assumption as in the CYTO model, but more pre-
cise, because with many maternal pedigree lineages in
the study, it is to be expected that some will have the
same mitogenomes, but we do not observe that informa-
tion for the CYTO model due to finite pedigrees. The
AMINO model assumed that mutations at synonymous
and non-protein coding nucleotides do not contribute to
the differences in milk production, which led to 48 amino
acid sequences or different AMINO haplotypes (h,): m =

O,Ihhozh) and Z, is mapping cows’

Z,h,, where h, NN(O’Ihan,l) and Z, is mapping cows’

mitochondrial effect to their AMINO haplotype effect.
This assumption implied that nonsynonymous mutations
lead to the synthesis of different amino acid sequences,
which all jointly influence mitochondrial effect. The
EVOL model fitted the effect of 10 phylogenetic hap-
logroups (h,), suggesting that long-term selection or ad-
aptations to ancient mutations and environments repre-
sents mitochondrial effects: m Z.,h,, where h,

~N(0, I az ) and Z, is mapping cows’ mitochondrial ef-
fect to their phylogenetic haplogroup effect. Finally, the
SNPmt model fitted the effect of 359 SNP mutations in
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mitogenome o on variation in milk production: m =W a,
where a ~M 0,1, o> | and W is an n; X n,,, mitogenome
?Thy T hy, ! snp

allele matrix with elements equal to 0 for reference al-
leles and 1 for alternative alleles.

All models were fitted using integrated nested Laplace
approximation (INLA) as implemented in the R package
R-INLA (v24.05.01-1; Rue et al., 2009) using R software
(v4.4.0; R Core Team, 2021) and RStudio (v2024.4.0.735;
RStudio Team, 2020). Integrated nested Laplace approxi-
mation, known as the Bayesian numerical approximation
method, computes marginal posteriors for all model
parameters. The main reason for using the R-INLA pack-
age was that it can model spatial effects through the
stochastic partial differential equation (SPDE) approach
of Lindgren et al. (2011). This approach can accommo-
date geographically referenced data, including areal and
geostatistical data as well as spatial point process data
(Lindgren and Rue, 2015). Use of this spatial modeling
approach was deemed important to correct for spatial
variation that could otherwise be captured by mitochon-
drial or maternal lineages in different regions of the
country. The SPDE approach involved: (1) construction
of a mesh based on the locations of individual herds or
farms, (2) delineation of spatial barriers given the spe-
cific shape of the country, (3) definition of a projection,
(4) creation of a projector matrix, and (5) configuration
of the barrier model (Bakka et al., 2019). See Selle et al.
(2020) for use of spatial modeling in quantitative genet-
ics. Pedigree-based relationship matrices for autosomal
and X chromosomes were constructed using R package
nadiv (Wolak, 2012) and provided to the R-INLA call.
All R code for data manipulation and model fitting in-
cluding data is available at GitHub (https://github.com/
highlanderlab/vbrajkovic_cattle mtdna.git) and Zenodo
(https://zenodo.org/records/14001934; see Notes).

Decomposition of Genetic (Co)variance Components

We were particularly interested in estimating how

much of the total phenotypic variance can be explained
2

. . ot .
by variance between mitogenome effects m* = — using
o

y
different models. Specifically, we calculated the follow-
ing parameters for each milk production trait: (1) m’cyro,
the proportion of phenotypic variance explained by vari-
ance between maternal lineages az ,(2) mZHApLO the pro-

portion of phenotypic variance explained by variance
. 2
between mitogenome haplotype sequences T}, 5 (3)

m’ smmvo» the proportion of phenotypic variance explained
by variance between AMINO haplotypes ai , (4) m’evor

the proportion of phenotypic variance explained by vari-
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ance between phylogenetic haplogroups 0',2’

~, and (5)
m’sxp the proportion of phenotypic variance explained by

variance between mitogenome effects modeled with
SNPs ai . In the calculation of m’g\p, the variance be-
tween mitogenome effects aZs = Var (m) = Var (W(x) in-
cluded all genic (SNP) locus variances as well as both
intragenic covariances (between SNP loci within defined
mitogenome genes or regions) and intergenic covariances
(between SNP loci between defined mitogenome genes
or regions). This innovative approach, inspired by the
concept of Lara et al. (2022) for autosomal genomic
analysis of genetic variance, was applied here for the
first time on mitogenomes. This approach is important
because of the lack of recombination in mitogenomes.
Because the complete mitogenome comprises 37 coding
genes or regions and one noncoding region, our analysis
allowed us to estimate and compare the contribution of
each gene or region to the total mitogenome variance 0’2 .

s
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RESULTS AND DISCUSSION
Mitogenome Diversity and Classification

For a highly selected breed, the diversity of complete
mitogenomes (16,344 bp long sequence) analyzed in 109
Holstein cows was unexpectedly high (Table 2).

A total of 96 different haplotypes (h) were observed,
corresponding to a haplotype diversity (Hd) of 0.997,
with 358 variable sites (S), a nucleotide diversity per site
(m) of 0.00064 and an average number of nucleotide dif-
ferences (k) of 10.509.

The observed diversity in the different functional
regions was quite variable, with the highest diversity
observed in the D-loop region (S = 74, = = 0.00376,
k =3.425,h =65, Hd = 0.948), followed by ND5 (S =43,
k=1.003,h=33, Hd=0.61) and ND4 (S =35,k =0.804,
h =32, Hd =0.588), whereas the lowest diversity was ob-
served in tRNA-Leu (S=1,k=0.018, h=2, Hd = 0.018)
and other tRNA regions. This agrees with the diversity

Table 2. Mitogenome diversity in 109 Holstein cows across different functional genes and regions'

Functional gene/region’ Length (bp) S Eta n k h Hd

128 958 13 13 0.00034 0.328 14 0.303
16S 1,571 18 18 0.00027 0.420 19 0.364
ATP6 681 12 12 0.00059 0.400 14 0.318
ATPS 201 6 6 0.00081 0.163 7 0.158
COX1 1,545 25 25 0.00042 0.653 22 0.486
COox2 684 10 10 0.00037 0.255 10 0.192
COX3 804 16 16 0.00054 0.437 17 0.334
CYTB 1,140 22 22 0.00042 0.476 22 0.407
D-loop 912 74 75 0.00376 3.425 65 0.948
D-loop beginning 364 12 12 0.00244 0.888 13 0.643
D-loop end 548 62 63 0.00464 2.538 55 0.888
*Inter CYTB tRNA-Thr 3 1 1 0.00612 0.018 2 0.018
*Inter tRNA-Ser tRNA-Asp 5 1 1 0.00367 0.018 2 0.018
NDI 957 21 21 0.00051 0.493 19 0.349
ND2 1,044 22 22 0.00057 0.600 22 0.487
ND3 357 7 7 0.00041 0.146 7 0.125
ND4 1,425 35 35 0.00056 0.804 32 0.588
ND4L 297 4 4 0.00043 0.127 5 0.124
ND35 1,821 43 43 0.00055 1.003 33 0.610
NDG6 528 16 16 0.00089 0.470 15 0.376
tRNA-Arg 69 1 1 0.00027 0.018 2 0.018
tRNA-Asn 73 1 1 0.00025 0.018 2 0.018
tRNA-Cys 67 1 1 0.00132 0.088 2 0.088
tRNA-Gln 72 1 1 0.00025 0.018 2 0.018
tRNA-Glu 69 1 1 0.00027 0.018 2 0.018
tRNA-Leu 75 1 1 0.00024 0.018 2 0.018
tRNA-Met 68 1 1 0.00027 0.018 2 0.018
tRNA-Ser 60 2 2 0.00091 0.055 3 0.054
tRNA-Thr 70 2 2 0.00052 0.037 3 0.037
tRNA-Val 67 1 1 0.00027 0.018 2 0.018
Mitogenome 16,344 358 359 0.00064 10.509 96 0.997

'S = number of variable sites; Eta = the total number of mutations; © = nucleotide diversity (per site); k = average
number of nucleotide differences; h = number of haplotypes; Hd = haplotype (gene) diversity.

The D-loop region is additionally subdivided into the D-loop beginning and the D-loop end (hypervariable regions
1 and 2) due to their specificity of connection and the inscription of entire mtDNA replication. */nter CYTB tRNA-
Thr region according to the referent mitogenome (GenBank accession number V00654) does not belong either to
the CYTB or tRNA-Thr, and the same applies to the Inter tRNA-Ser tRNA-Asp region. Other tRNA regions that did

not show mutations are not included in the table.
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Figure 2. Median joining network representing the phylogenetic relationship (mutational differences) of all complete mitogenomes found in
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observed in the global data set analyzed by Cubric-Curik
et al. (2022), in which the D-loop was the most diverse
mitogenome region, whereas the observed diversity of
the NDHS5 gene was among the highest.

The phylogenetic relationship (mutational differences)
of all complete mitogenomes observed in the Holstein
breed (haplotypes reported in GenBank) together with
several haplotypes representing all other existing hap-
logroups is shown in Figure 2.

Overall, most haplotypes of Holstein cattle (94%)
not sampled in Croatia were classified as T3, which was
expected because Tjs is the predominant haplogroup char-
acteristic of cattle of European origin (Figure 2), whereas
only 1 T, (Italy) and 1 T4 (Korea) haplotype were found
(detailed description in Supplemental Table S2). In the
Croatian Holstein population, following the pattern
observed for Holstein cattle, 91 haplotypes (95%) were
assigned to the T3 haplogroup, and we also identified 2
T, haplotypes, 1 T, haplotype, and 1 Ts haplotype. Ac-
cording to Brajkovic (2019), the presence of T,, T,, and
Ts haplotypes is most likely the consequence of genetic
upgrading of local Croatian breeds with Holstein bulls, as
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T,, T,, and Ts haplotypes were observed in Istrian cattle
(T, with 6.7%), Croatian Busha cattle (T, with 24% and
T, with 32%), and Slavonian Syrmian Podolian cattle (T
with 25%)

Variance Components and Quantitative
Genetic Parameters

The results of the quantitative genetic analysis of
phenotypic variation for milk production traits in the
Croatian Holstein breed are presented in Table 3 for the
different models analyzed (CYTO, HAPLO, AMINO,
EVOL, and SNPmt). In addition to the estimated variance
components, the contribution of mitochondrial variation
was presented as a proportion of phenotypic variation
alongside the additive contribution of autosomal chro-
mosomes, the additive contribution of the X chromosome
(x%), and other random environmental effects presented
as contemporary group and permanent environment ef-
fects. The estimated heritability (phenotypic variance
explained by the additive autosomal component) was
within the range found in less complex modeling of the
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The random effects of the contemporary group and
the permanent environment were stable in all different
mitochondrial models.

The SNPmt model reduced the estimate of variance
and range between location effects indicating possible
confounding between these 2 effects. The distributions
of the estimated haplotype effects for the milk produc-
tion traits (HAPLO model) are shown in Figure 3. The
range of estimated haplotype effects was approximately
between —0.5 and 0.5 phenotypic standard deviations,
which is a large effect.

For all traits analyzed, the best and worst haplotypes
were those assigned to the T; haplogroup, the most com-
mon haplogroup in European cattle, whereas other non-
T; haplotypes (T;, T,, and Ts) were mainly distributed
within 50% of the worst haplotypes for milk production.
The results suggest that if there is a difference between
the haplogroups, their distribution of haplotype effects is
likely to overlap. Unfortunately, we could not verify this
statement due to the small number of non-T; haplotypes.
High linear correlation between haplotype effects of all
milk production traits (r = 0.83, 0.98, and 0.85 for milk
yield, protein yield, and fat yield, respectively) were ob-
served pointing to its pleiotropic behavior of nonrecom-
bining mitochondrial haplotypes considered as a single
gene.

Decomposition of Mitogenome Variance
to Gene Regions

By applying the SNPmt model to estimate mitochon-
drial effects, we were able to decompose the contribu-
tion of functionally or positionally specific mitogenome
regions to the total variance between mitogenome ef-
fects. For this analysis, we used the approach of Lara et
al. (2022) for the autosomal genome. This approach is
important because the mitogenome does not recombine,
meaning that covariances between some functionally re-
lated SNPs can be important components of the variance
between mitogenome effects. The results of the variance
decomposition, separated by specific mitogenome re-
gion, are shown in Figure 4 and Supplemental Tables S3
and S4 (see Notes).

A very similar pattern of variance decomposition was
observed for all 3 milk production traits, suggesting that
the influence of the mitogenome on milk yield, fat yield,
and protein yield may occur through similar biological
processes. For all 3 traits, the largest contribution to
variance was observed for the D-loop end, followed by
the ND5 and ND4, whereas the contribution of COX1,
D-loop beginning, CYTB, 12S RNA, 16S RNA, ATP6,
COX2, COX3, ND1, ND2, and ND6 was non-negligible.

At the same time, the estimated covariances were larger
between SNPs located in different mitogenome regions
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and, with few exceptions, were predominantly negative
(Figure 4). In contrast, the only substantial (negative)
covariance within mitogenome regions was estimated
between SNPs located in the D-loop end. We also ana-
lyzed variance of mitogenome regions as a function of
the number of polymorphic sites using linear regressions
(for more information, refer to Supplemental Figures S1
and S2 [see Notes]).
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Implications, Limitations, and Future Work

The impact of mitogenome on milk production traits
has been intensively studied at the end of 20th century
using the cytoplasmic model (Bell et al., 1985; Kennedy,
1986; Schutz et al., 1994; Boettcher and Gibson, 1997;
Albuquerque et al., 1998; Roughsedge et al., 1999).
Although estimated phenotypic variance explained by
different maternal lineages (m? ranging from 0% to 10%)
has pointed to the possible considerable effect of the mi-
togenome, the observed results were never implemented
in practical cattle dairy breeding. The lack of understand-
ing of why estimated cytoplasmic effects were zero in
some populations and 10% in other populations is one
potential explanation. Another potential explanation
was questioning how well maternal lineages used in the
cytoplasmic models reflect the true variation present in
cattle mitogenome, with high possibility that some ma-
ternal lineages are identical or at least phylogenetically
connected. In the end, the lack of a breeding concept on
how to use mitogenome variation was probably the final
decisive explanation for ignoring cytoplasmic effects
in practical cattle breeding. At the same time, simula-
tions by Mafra Fortuna et al. (2024) have shown that the
inclusion of mitochondrial DNA variation increases the
accuracy in different animal categories by between +0.01
and +0.05, though with a considerable variation between
replicates similar to large variation in past studies on
phenotypic variance explained by different maternal
lineages.

This study has been driven by recent advances in mi-
tochondrial research, where the functional capabilities
of mitochondria have implications for crucial biological
processes within the cell that extend far beyond their
fundamental role in oxidative phosphorylation, the Krebs
cycle, and fatty acid oxidation (Al-Kafaji and Golbahar,
2013; Picard et al., 2018; McGuire, 2019; Monzel et al.,
2024; Murphy and O’Neill, 2024).

With this in mind, we would be surprised if variation
in the mitogenome had no effect on highly intensive milk
production, a stressful and energy-consuming biological
process (Favorit et al., 2021). For example, mitochon-
drial protein gene expression and the oxidative phos-
phorylation pathway have been shown to be associated
with feed efficiency and energy balance in dairy cows
(Dorji et al., 2020, 2021). More recently, mitochondrial
efficiency has been linked to mtDNA copy number and
associated with production in beef (Sanglard et al., 2023)
and dairy (Laubenthal et al., 2016; Weikard and Kuehn,
2018) cattle.

We went beyond cytoplasmic modeling and showed,
based on the complete mitogenome information, that
substantial phenotypic variance in milk production traits
(milk, fat, and protein yield), ranging from 5% to 7%



Brajkovic et al.: MITOGENOME IMPACT ON CATTLE MILK PRODUCTION

across the 3 traits, was influenced by the mitogenome.
Our analyses were based on complex modeling and
provided additional insights into the influence of the
mitogenome on milk production traits. Thus, we were
able to show that mitogenome diversity in Croatian Hol-
steins contributes substantially to considerable variation
in milk production traits between different haplotypes.
We are aware that despite the large number of complete
mitogenomes (109), the total number of lactating cows in
the dataset was relatively small compared with classical
genetic analyses of quantitative traits in dairy cattle. For
this reason, we expect that similar analyses will be per-
formed in different dairy breeds based on a larger number
of complete mitogenomes and lactating cows. The routine
use of low-coverage whole-genome sequences, which
are already on the market, offers such an opportunity at
no additional cost (Sanglard et al., 2022). Alternatively,
some commercial SNP arrays provide good coverage of
complete mitogenome polymorphism (Brajkovic et al.,
2023). We were not able to study the separation of the
influence of the nuclear genome and the mitogenome
because we did not have genotype information for the
nuclear genome SNPs, though we did control for nuclear
genome via expected autosomal and X chromosome
relationships based on pedigrees. The observation that
SNPmt model reduced the estimate of variance and range
between location effects is puzzling and possibly indi-
cates confounding between these 2 effects. This result is
pointing toward a need for future research on modeling
genetic and environmental or geographic effects with
larger data sets.

Over 1,158 proteins are required for mitochondrial
function in mammals, almost all of which are controlled
by the nuclear genome, and interaction effects or incom-
patibility between nuclear and mitogenome SNPs have
already been demonstrated (Wang et al., 2017; Dorji et
al., 2020; Kwon et al., 2022; Ward et al., 2022). This
indicates the need for further study of the separation of
the influence of the nuclear genome and the mitogenome
and possibly even their interaction. A good example of
such joint modeling of autosomal, nuclear mitochon-
drial (past mitogenome now part of nuclear genome),
and mitogenome genetic variation for a complex trait in
humans (neuroticism) was recently performed by Xia et
al. (2023). In addition, we did not consider the effects of
heteroplasmy (the occurrence of multiple mtDNA haplo-
types within a single cell or organism), which is known
to affect complex traits in humans (Ye et al., 2014).

Our study demonstrates a pleiotropic effect of mitoge-
nomes with high correlations of the estimated haplotype
effects between different milk production traits (r >0.83),
suggesting that selection of some haplotypes might be
favorable for several traits. More drastically, this result
opens the quest for superior mitogenomes that could be
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created by genetic engineering, especially because sub-
stantial progress has recently been made in mitogenome
editing in experimental mammals (Gammage et al.,
2018; Rai et al., 2018; Klucnika and Ma, 2020; Barrera-
Paez and Moraes, 2022). For the introduction of mitoge-
nome gene editing in practical cattle breeding, either by
introducing new variation or by enabling recombination
between different haplotypes (simultaneous gene editing
at several SNP positions), a much better understanding is
needed of how mitogenome genetic variation contributes
to phenotypic differences without neglecting mito-nucle-
ar interactions. The separation of haplotype and single
SNP effects in modeling the effects of the mitogenome
on complex traits, together with comprehensive empiri-
cal evidence, is certainly the first step required.

CONCLUSIONS

In this pioneering study, we used complete mitogenome
information to evaluate its influence on milk production
traits in Croatian Holstein dairy cows. Our findings
reveal substantial proportions of phenotypic variance
explained by 4 different mitogenome models (CYTO,
HAPLO, AMINO, and SNPmt), ranging from 5% to
7% across all 3 milk traits, whereas the contribution by
EVOL was negligible. The mitogenome’s impact on milk
production likely arises from its high diversity despite
its small size, a factor possibly overlooked in previous
cytoplasmic models. Furthermore, our study shows that
integrating complete mitogenome data offers additional
insights, allowing identification of haplotypes or SNPs
contributing to differences and reveals the pleiotropic
effects of haplotypes, favorable or unfavorable, on milk,
fat, and protein yield. Although these results require vali-
dation in other cattle populations with more sequenced
mitogenomes and phenotyped animals, the potential for
using mitogenome data in animal breeding is promising,
especially as sequencing costs decrease.
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acid model with unique amino acid sequences; BEAST
= Bayesian evolutionary analysis sampling trees; ¢’ =
phenotypic variance proportion explained by contempo-
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maternal lineages; eta = total number of mutations; EVOL
= evolutionary model based on a phylogenetic analysis
using BEAST phylogenetic analysis; h = number of hap-
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nucleotide diversity per site; p = spatial range parameter.
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