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ABSTRACT

Substantial advances in livestock traits have been 
achieved primarily through selection strategies targeting 
variation in the nuclear genome, with little attention giv-
en to mitogenome variation. We analyzed the influence 
of the mitogenome on milk production traits of Holstein 
cattle in Croatia based on strategically generated next-
generation sequencing data for 109 cows pedigree-linked 
to 7,115 milk production records (milk, fat, and protein 
yield) from 3,006 cows (first 5 lactations). Because 
little is known about the biology of the relationship be-
tween mitogenome variation and production traits, our 
quantitative genetic modeling was complex. Thus, the 
proportion of total variance explained by mitogenome 
inheritance was estimated using 5 different models: (1) 
a cytoplasmic model with maternal lineages (CYTO), (2) 
a haplotypic model with mitogenome sequences (HAP-
LO), (3) an amino acid model with unique amino acid 
sequences (AMINO), (4) an evolutionary model based 
on a phylogenetic analysis using Bayesian Evolutionary 
Analysis Sampling Trees phylogenetic analysis (EVOL), 
and (5) a mitogenome SNP model (SNPmt). The poly-
genic autosomal and X chromosome additive genetic 
effects based on pedigree were modeled, together with 
the effects of herd-year-season interaction, permanent 
environment, location, and age at first calving. The es-
timated proportions of phenotypic variance explained 
by mitogenome in 4 different models (CYTO, HAPLO, 
AMINO, and SNPmt) were found to be substantial given 
the size of mitogenome, ranging from 5% to 7% for all 3 
milk traits. At the same time, a negligible proportion of 

the phenotypic variance was explained by mitogenome 
with the EVOL model. Similarly, in all models, no pro-
portion of phenotypic variance was explained by the X 
chromosome. Although our results should be confirmed 
in other dairy cattle populations, including a large num-
ber of sequenced mitogenomes and nuclear genomes, the 
potential of utilizing mitogenome information in animal 
breeding is promising, especially as the acquisition of 
complete genome sequences becomes cost-effective.
Key words: Holstein cattle, milk production traits, 
complete mitogenome, next-generation sequencing, 
variance components

INTRODUCTION

Domestic cattle have profoundly influenced develop-
ment of modern human societies, consolidating their sta-
tus as the world’s most economically important domestic 
animal. This central importance is particularly evident in 
the increasing demand for high-yielding breeds, with the 
emphasis on dairy cows. Over the last century, the milk 
yield per lactation has increased many times over (Britt 
et al., 2018, 2021), emphasizing the indispensable role of 
these animals in satisfying human needs and promoting 
agricultural progress.

Meeting the elevated production demands of high-
producing dairy cows requires a significant amount of 
energy, which emphasizes the importance of bioenergetic 
homeostasis and lactogenesis in adapting to fluctuations 
in energy requirements and physiological processes dur-
ing the lactation period (Cheng and Ristow, 2013; Wei-
kard and Kuehn, 2018). The pivotal role in maintaining 
metabolic balance, essential for high milk production, 
lies with the mitochondria, the double-membrane-bound, 
semi-autonomous organelles in the cytoplasm of cells. 
The mitochondria are often referred to as the “power-
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house” of cells and make a significant contribution 
by generating around 90% of adenosine triphosphate 
through oxidative phosphorylation from carbohydrates 
and fatty acids (Wilson et al., 1985; Hadsell et al., 2011; 
Cheng and Ristow, 2013; Favorit et al., 2021). The im-
portance of mitochondria is particularly evident when 
the high energy requirements for milk production com-
pete for resources, potentially disrupting reproductive 
processes, resilience, and overall health (Monzel et al., 
2024). In addition, the role of mitochondria goes beyond 
energy provision and includes multifunctional tasks such 
as calcium signaling, regulation of membrane potential, 
control of cell metabolism, and involvement in apoptosis 
(Ballard and Melvin, 2010; Monzel et al., 2024).

Each cell contains several hundred to thousands of 
mitochondria, the inheritance of which in cattle, as in 
other mammals, is exclusively along the maternal lin-
eage (Hutchison et al., 1974). The cattle mitogenome is 
a small circular molecule spanning 16,338 bp in length 
(Anderson et al., 1982) that is characterized by semi-
conservative self-replication and exhibits the unique 
property of rapid evolution without recombination, as 
highlighted in many studies (Harrison, 1989; Javonillo 
et al., 2010; Prosdocimi et al., 2012; Castro Paz et al., 
2014). It consists of 37 genes without introns, 13 of which 
encode respiratory chain proteins involved in energy 
metabolism, 2 ribosomal and 22 transfer RNAs essential 
for protein synthesis (Boore, 1999; Wallace et al., 1999), 
and a noncoding region is known as the control region or 
D-loop. Variation in the mitogenome is represented by 
unique sequences or haplotypes that have been shaped by 
mutations, drift and selection over a long period of time 
and passed on by maternal ancestors. According to their 
phylogenetic origin, unique cattle haplotypes are catego-
rized into several highly divergent haplogroups (I, C, R, 
P, Q, T1, T2, T3, T4, and T5), which are commonly used 
in domestication studies (Bradley et al., 1996; Achilli et 
al., 2008; Zhang et al., 2013; Verdugo et al., 2019) and 
diversity studies (Cubric-Curik et al., 2022; Dorji et al., 
2022).

The effects of mitogenome variation on complex traits 
in humans are closely related to human health and have 
been well-investigated in many studies (Wallace, 2005, 
2015; Gorman et al., 2016). In particular, various mitoge-
nome mutations or haplotypes have been associated with 
several human diseases, e.g., cancer (Shen et al., 2011), 
diabetes (Liou et al., 2012), Alzheimer’s disease (Ridge 
et al., 2012), Parkinson’s disease (Ghezzi et al., 2005), 
and Leber hereditary optic neuropathy (Yu-Wai-Man et 
al., 2009).

In contrast, the effects of mitogenome variation in cattle 
have been studied in the context of production traits, but 
the first disease caused by a mutation in the mitogenome 

has only recently been reported (Novosel et al., 2022). 
However, most studies evaluating the effects of mitoge-
nome variation on economically important traits such as 
milk production were conducted in the late 20th century. 
These studies were based on cytoplasmic models, which 
assume that all observed maternal lineages in the pedi-
gree have different mitogenome haplotypes (Bell et al., 
1985; Kennedy, 1986; Schutz et al., 1992; Boettcher and 
Gibson, 1997; Albuquerque et al., 1998; Roughsedge et 
al., 1999). In these studies, the cytoplasmic effects ex-
plained from 0% to 10% of the phenotypic variability. In 
addition, Boettcher et al. (1996b) simulated the effects of 
maternal lineages from the normal distribution, analyzed 
the data with fixed and random models, and concluded 
that random (cytoplasmic) models estimate the effects of 
the different maternal lineages more accurately. On the 
other hand, there are not many studies in which the ef-
fects of mitogenome polymorphisms and milk production 
were estimated using genomic data because sequence 
data were available only for short regions such as D-
loop, due to technical limitations in obtaining complete 
mitogenomes for large numbers of individuals (Brown 
et al., 1989; Schutz et al., 1994; Boettcher et al., 1996a; 
Qin et al., 2012). Although nuclear genome information 
is now widely used to estimate breeding values (Boich-
ard et al., 2015; Weigel et al., 2017; Cole and VanRaden, 
2018), the role of the complete mitogenome in improving 
milk production has not yet been fully explored. Recent 
technological advances, particularly the emergence of 
next-generation sequencing, have opened up the possibil-
ity of efficiently genotyping large numbers of complete 
mitogenomes at low cost. Moreover, informative SNPs 
of the mitogenome have been integrated into SNP arrays 
(Brajkovic et al., 2023) or might be extracted from whole 
genome sequences with low coverage (Sanglard et al., 
2023). These resources provide a solid foundation for 
further research on the utilization of complete mitoge-
nome information in dairy cattle breeding.

The main objective of this study was to evaluate the 
effects of inherited mitochondria on milk production 
traits in cattle using the complete mitogenome sequence 
information. Analyses were performed on Croatian Hol-
stein cows, with a focus on a comprehensive modeling 
of variation across the complete mitogenome. More spe-
cifically, our focus was on estimating the proportion of 
phenotypic variance explained by mitogenome variation 
(m2) using 5 different models: (1) a cytoplasmic model 
with maternal lineages (CYTO), (2) a haplotypic model 
with mitogenome sequences (HAPLO), (3) an amino 
acid model with unique amino acid sequences (AMINO), 
(4) an evolutionary model (EVOL) based on a phyloge-
netic analysis using Bayesian evolutionary analysis sam-
pling trees (BEAST), and (5) a mitogenome SNP model 
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(SNPmt). In assessing the relationship between inherited 
mitochondrial variation and milk production, we are un-
aware of a single study that has used similarly complex 
modeling while utilizing complete mitogenome informa-
tion on a large scale. Furthermore, our decomposition of 
genetic variance into variance components within and 
between mitogenome regions is novel and opens new 
perspectives for analyzing the effects of nonrecombining 
mitogenome polymorphism on economically important 
production traits.

MATERIALS AND METHODS

Data and Sampling Strategy of Maternal Lineages

Pedigree and lactation data of Holstein cattle were pro-
vided by the Croatian Agency for Agriculture and Food 
(Zagreb, Croatia), a national institution responsible for 
milk recording and estimation of genetic parameters. For 
pedigree verification, sampling strategy, and maternal 
lineage imputation, MaGelLan 1.0 (Maternal Geneal-
ogy Lineage Analyzer) software (Ristov et al., 2016) 
was used to strategically select 109 Holstein cows from 
20,973 lactating animals based on the 2016 report, with 
the aim that the resulting maternal lineage coverage is as 
diverse as possible. The 109 Holstein cows included in 
the sample thus represent 109 maternal pedigree lineages 
according to the pedigree data and comprise a total of 
3,040 individuals with 7,576 records within the first 10 
lactations, with each maternal pedigree lineage compris-
ing 10 to 74 individuals. The full pedigree for our 3,040 
individuals consisted of 6,336 related individuals. The 
descriptive statistics for milk production traits over the 
first 5 lactations (305 d) used in the repeatability model, 
comprising 3,006 individuals and resulting in a total of 
7,115 records, are presented in Table 1.

Sampling Description

Milk, hair, and tissue samples were collected from 
small (10–30 cows), medium (30– 100 cows), and large 
(more than 100 cows) farms registered with the Minis-
try of Agriculture (Zagreb, Croatia). The samples were 
distributed across 7 counties and 40 farms in Croatia 
(Figure 1). A total of 109 samples were collected, includ-
ing 86 milk samples, 22 hair samples, and one ear tissue 
sample. A strategy for the collection of milk samples as 
a noninvasive method, taking into account the required 
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Table 1. Descriptive statistics for milk production traits in Croatian Holstein cattle

Lactation   Variable (kg) N Mean SD Minimum Maximum

1   Milk 2,390 6,733 1,582 1,673 11,980
  Fat 2,389 258 65 83 589
  Protein 2,388 220 52 82 386

2   Milk 1,984 7,440 1,868 1,537 11,960
  Fat 2,020 291 82 81 598
  Protein 2,019 247 62 85 447

3   Milk 1,336 7,482 1,916 2,201 11,982
  Fat 1,360 293 84 89 586
  Protein 1,359 246 64 91 458

4   Milk 835 7,344 2,012 1,770 11,995
  Fat 850 288 87 94 581
  Protein 849 241 66 82 418

5   Milk 484 7,168 1,968 2,010 11,962
  Fat 488 277 83 81 515
  Protein 486 232 62 83 428

Figure 1. Geographical representation of the samples collected in 
Croatia. Blue circles (real) represent the location of the sampled farms 
where milk or hair was collected covering 109 maternal lineages or mi-
togenomes, and the orange circles (imputed) represent the location of the 
farms for all cows and their milk records used in the analyses based on 
pedigree imputation of the previously collected 109 mitogenomes to all 
animals within the maternal lineages.
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amount of milk, storage temperature, liquid or pelletized 
form, and storage time for the extraction of good quality 
DNA, is described in Brajkovic et al. (2018).

Molecular Genetic Analyses  
and Mitogenome Diversity

The molecular genetic analysis and software with in-
formation on (1) DNA isolation, (2) mitogenome ampli-
fication by 3-step PCR, (3) DNA library preparation, (4) 
sequencing platform, (5) the bioinformatic analysis of the 
Fastq sequence, (6) the calculation of the mitogenome 
depth and breadth of coverage, and (7) the list of National 
Center for Biotechnology Information (NCBI) GenBank 
accession numbers are presented in our phylogenetic 
meta-analysis of the bovine mitogenome (Cubric-Curik 
et al., 2022) and in Supplemental Table S1 (see Notes).

The diversity of the complete mitogenome and the 
diversity of 27 functional regions were summarized with 
the number of variable sites (S), the total number of 
mutations (eta), the nucleotide diversity per site (π), the 
average number of nucleotide differences (k), the num-
ber of haplotypes (h), and the haplotype (gene) diversity 
(Hd). The summary of genetic parameters was calculated 
using DNAsp v6 (Rozas et al., 2017) and the software 
Arlequin v. 3.5.2.2 (Excoffier and Lischer, 2010).

Haplotype Construction, Classification,  
and Phylogenetic Analysis

To test the influence of mitogenome polymorphisms 
on phenotypic variance in milk traits (milk, fat, and 
protein yield) of Holstein cattle, 3 types of haplotypes 
or haplogroups were used. First, mitogenome haplotypes 
were constructed based on all variable sites of the entire 
nucleotide sequences. Analyses were performed using 
Clustal Omega v1.2.2 software (Sievers et al., 2011), 
MEGA7 software (Kumar et al., 2016), and DNAsp v6 
software (Rozas et al., 2017; see also Supplemental Table 
S1). Second, amino acid haplotypes were constructed 
based on a sequence of 3,828 amino acids translated from 
a nucleic acid sequence of 11,484 bp and comprising 13 
protein-coding mitogenome regions with a total of 59 
variable sites. Analyses were performed using MEGA7 
software (Kumar et al., 2016) and SAS (v9.4; SAS Insti-
tute, 2012; see also Supplemental Table S1).

Third, evolutionary haplogroups of Holstein mitoge-
nomes were formed based on an Markov chain Monte 
Carlo Bayesian evolutionary analysis performed using 
the BEAST v1.4.3 software package (Suchard et al., 
2018) as part of a comprehensive phylogenetic meta-
analysis of cattle described in Cubric-Curik et al. (2022). 
The 109 Holstein mitogenomes were grouped into 10 

subclades representing evolutionary haplogroups (see 
Supplemental Table S1 for more details).

To better understand the origin of mitogenome haplo-
types and their estimated effect on milk production traits, 
we classified our mitogenomes into specific haplogroups 
using the MitoToolPy v1.0 program (Peng et al., 2015; 
Supplemental Table S1, column “MTP”), which included 
278 mitogenomes of the genus Bos as a reference base for 
the determination of haplogroups (266 for Bos taurus, 2 
for Bos primigenius and 10 for Bos indicus). To compre-
hensively analyze our Holstein mitogenomes in a broader 
context, a median joining network (Bandelt et al., 1999) 
was constructed using PopArt v1.7 (Leigh and Bryant, 
2015) to visualize the phylogenetic relationship with an 
additional 70 nucleotide sequences (Supplemental Table 
S2, see Notes) from the NCBI GenBank (Clark et al., 
2016), representing 62 haplotypes distributed across 8 
distinct haplogroups (T1, T2, T3, T4, T5, P, Q, R). Arleqin 
v3.5.2.2 software (Excoffier and Lischer, 2010) was used 
to create the haplotype frequency matrix for PopArt v1.7 
(Leigh and Bryant, 2015) input.

Quantitative Genetic Analyses

We employed 5 different models to estimate the mag-
nitude of the association between mitogenomes and milk 
production traits. In each of the 5 models (CYTO, HAP-
LO, AMINO, EVOL, and SNPmt) we applied a Bayes-
ian repeatability animal model that included the first 5 
lactation records. This comprehensive analysis included 
3 evaluated traits: milk, fat, and protein yield, resulting 
in a total of 15 assessments across 5 models. Our model 
can be described as follows:

y = Xb + Zcc + Zss + Zi(a + x + m + p) + e,

where y is ny × 1 vector of ny = 7,115 milk, fat, and pro-
tein 305-d yields (standardized to zero mean and unit 
variance); X is an ny × nb design matrix for the nb = 12 
effects of the overall mean, the interaction between the 
number of calving and age at calving covariate and b is 
the corresponding vector of effects; Zc is an ny × nc de-
sign matrix for nc = 2,654 contemporary groups defined 
as herd-year-season effects c ~N 0 I, ,sc

2( )  where the calv-
ing seasons within a year were defined as spring (March 
to May), summer (June to August), autumn (September 
to November), and winter (December to February); Zs is 
an ny × ns design matrix for ns = 807 herd location (spa-
tial) effects s ~N 0 S, , ,σ ρs

2( )





 with S being a Matérn cova-
riance function based on Euclidean distances between 
the herd locations and parameterized with variance ss

2 
and range ρ (see Selle et al., 2020 and references therein 
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for further details); Zi is an ny × ni design matrix for ni = 
6,336 individual animal effects with the following com-
ponents: a ~N 0 A, sa

2( ) the additive genetic effect of auto-
somal DNA with pedigree-relationship matrix A (Hen-
derson, 1976); x ~N 0 X, sx

2( ) the additive genetic effect of 
X chromosome DNA with pedigree-relationship matrix 
X (Grossman and Eisen, 1989; Fernando and Grossman, 
1990); m is the additive genetic effect of mitochondrial 
DNA modeled with different assumptions described be-
low; p ~N 0 I, sp

2( ) is the permanent environmental effect; 

and e ~N 0 I, se
2( ) is the residual; and I represents the iden-

tity matrices of the corresponding dimensions.
The 5 models differed in their representation of mi-

togenome effects. Mitogenome is a circular haplotype, so 
we denote the effect of differently defined mitogenome 
haplotypes with hm, where subscript m denotes a model. 
In the CYTO model, the mitogenome effects were mod-
eled by considering the effect of 109 maternal pedigree 
lineages (hc), which were assumed to be independent:  
m = Zchc, where hc ~N 0 I, h hc c

s2( ) and Zc is mapping cows’ 
mitochondrial effect to their maternal pedigree lineage 
effect. The HAPLO model fitted the effect of 96 unique 
complete mitogenome haplotype sequences (hh): m = 
Zhhh, where hh ~N 0 I, h hh h

s2( ) and Zh is mapping cows’ 
mitochondrial effect to their mitogenome haplotype ef-
fect, assuming that different nucleotide cbinations form 
different haplotypes that influence mitochondrial effi-
ciency and consequently milk production. This is the 
same assumption as in the CYTO model, but more pre-
cise, because with many maternal pedigree lineages in 
the study, it is to be expected that some will have the 
same mitogenomes, but we do not observe that informa-
tion for the CYTO model due to finite pedigrees. The 
AMINO model assumed that mutations at synonymous 
and non-protein coding nucleotides do not contribute to 
the differences in milk production, which led to 48 amino 
acid sequences or different AMINO haplotypes (ha): m = 
Zaha, where ha ~N 0 I, h ha a

s2( ) and Za is mapping cows’ 
mitochondrial effect to their AMINO haplotype effect. 
This assumption implied that nonsynonymous mutations 
lead to the synthesis of different amino acid sequences, 
which all jointly influence mitochondrial effect. The 
EVOL model fitted the effect of 10 phylogenetic hap-
logroups (he), suggesting that long-term selection or ad-
aptations to ancient mutations and environments repre-
sents mitochondrial effects: m = Zehe, where he 
~N 0 I, h he e

s2( ) and Ze is mapping cows’ mitochondrial ef-
fect to their phylogenetic haplogroup effect. Finally, the 
SNPmt model fitted the effect of 359 SNP mutations in 

mitogenome α on variation in milk production: m = W α, 
where α ~N 0 I, h ha

s
α

2( ) and W is an ni × nsnp mitogenome 
allele matrix with elements equal to 0 for reference al-
leles and 1 for alternative alleles.

All models were fitted using integrated nested Laplace 
approximation (INLA) as implemented in the R package 
R-INLA (v24.05.01-1; Rue et al., 2009) using R software 
(v4.4.0; R Core Team, 2021) and RStudio (v2024.4.0.735; 
RStudio Team, 2020). Integrated nested Laplace approxi-
mation, known as the Bayesian numerical approximation 
method, computes marginal posteriors for all model 
parameters. The main reason for using the R-INLA pack-
age was that it can model spatial effects through the 
stochastic partial differential equation (SPDE) approach 
of Lindgren et al. (2011). This approach can accommo-
date geographically referenced data, including areal and 
geostatistical data as well as spatial point process data 
(Lindgren and Rue, 2015). Use of this spatial modeling 
approach was deemed important to correct for spatial 
variation that could otherwise be captured by mitochon-
drial or maternal lineages in different regions of the 
country. The SPDE approach involved: (1) construction 
of a mesh based on the locations of individual herds or 
farms, (2) delineation of spatial barriers given the spe-
cific shape of the country, (3) definition of a projection, 
(4) creation of a projector matrix, and (5) configuration 
of the barrier model (Bakka et al., 2019). See Selle et al. 
(2020) for use of spatial modeling in quantitative genet-
ics. Pedigree-based relationship matrices for autosomal 
and X chromosomes were constructed using R package 
nadiv (Wolak, 2012) and provided to the R-INLA call. 
All R code for data manipulation and model fitting in-
cluding data is available at GitHub (https:​/​/​github​.com/​
highlanderlab/​vbrajkovic​_cattle​_mtdna​.git) and Zenodo 
(https:​/​/​zenodo​.org/​records/​14001934; see Notes).

Decomposition of Genetic (Co)variance Components

We were particularly interested in estimating how 
much of the total phenotypic variance can be explained 

by variance between mitogenome effects m
y

2
2

2
=

s

s
 using 

different models. Specifically, we calculated the follow-
ing parameters for each milk production trait: (1) m2

CYTO, 
the proportion of phenotypic variance explained by vari-
ance between maternal lineages shc

2 , (2) m2
HAPLO the pro-

portion of phenotypic variance explained by variance 
between mitogenome haplotype sequences shh

2 , (3) 
m2

AMINO, the proportion of phenotypic variance explained 
by variance between AMINO haplotypes sha

2 , (4) m2
EVOL 

the proportion of phenotypic variance explained by vari-
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ance between phylogenetic haplogroups she
2 , and (5) 

m2
SNP the proportion of phenotypic variance explained by 

variance between mitogenome effects modeled with 
SNPs shs

2 . In the calculation of m2
SNP, the variance be-

tween mitogenome effects shs Var Var2 = ( ) = ( )m Wa  in-
cluded all genic (SNP) locus variances as well as both 
intragenic covariances (between SNP loci within defined 
mitogenome genes or regions) and intergenic covariances 
(between SNP loci between defined mitogenome genes 
or regions). This innovative approach, inspired by the 
concept of Lara et al. (2022) for autosomal genomic 
analysis of genetic variance, was applied here for the 
first time on mitogenomes. This approach is important 
because of the lack of recombination in mitogenomes. 
Because the complete mitogenome comprises 37 coding 
genes or regions and one noncoding region, our analysis 
allowed us to estimate and compare the contribution of 
each gene or region to the total mitogenome variance shs

2 .

RESULTS AND DISCUSSION

Mitogenome Diversity and Classification

For a highly selected breed, the diversity of complete 
mitogenomes (16,344 bp long sequence) analyzed in 109 
Holstein cows was unexpectedly high (Table 2).

A total of 96 different haplotypes (h) were observed, 
corresponding to a haplotype diversity (Hd) of 0.997, 
with 358 variable sites (S), a nucleotide diversity per site 
(π) of 0.00064 and an average number of nucleotide dif-
ferences (k) of 10.509.

The observed diversity in the different functional 
regions was quite variable, with the highest diversity 
observed in the D-loop region (S = 74, π = 0.00376,  
k = 3.425, h = 65, Hd = 0.948), followed by ND5 (S = 43,  
k = 1.003, h = 33, Hd = 0.61) and ND4 (S = 35, k = 0.804,  
h = 32, Hd = 0.588), whereas the lowest diversity was ob-
served in tRNA-Leu (S = 1, k = 0.018, h = 2, Hd = 0.018) 
and other tRNA regions. This agrees with the diversity 
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Table 2. Mitogenome diversity in 109 Holstein cows across different functional genes and regions1

Functional gene/region2 Length (bp) S Eta π k h Hd

12S 958 13 13 0.00034 0.328 14 0.303
16S 1,571 18 18 0.00027 0.420 19 0.364
ATP6 681 12 12 0.00059 0.400 14 0.318
ATP8 201 6 6 0.00081 0.163 7 0.158
COX1 1,545 25 25 0.00042 0.653 22 0.486
COX2 684 10 10 0.00037 0.255 10 0.192
COX3 804 16 16 0.00054 0.437 17 0.334
CYTB 1,140 22 22 0.00042 0.476 22 0.407
D-loop 912 74 75 0.00376 3.425 65 0.948
D-loop beginning 364 12 12 0.00244 0.888 13 0.643
D-loop end 548 62 63 0.00464 2.538 55 0.888
*Inter CYTB tRNA-Thr 3 1 1 0.00612 0.018 2 0.018
*Inter tRNA-Ser tRNA-Asp 5 1 1 0.00367 0.018 2 0.018
ND1 957 21 21 0.00051 0.493 19 0.349
ND2 1,044 22 22 0.00057 0.600 22 0.487
ND3 357 7 7 0.00041 0.146 7 0.125
ND4 1,425 35 35 0.00056 0.804 32 0.588
ND4L 297 4 4 0.00043 0.127 5 0.124
ND5 1,821 43 43 0.00055 1.003 33 0.610
ND6 528 16 16 0.00089 0.470 15 0.376
tRNA-Arg 69 1 1 0.00027 0.018 2 0.018
tRNA-Asn 73 1 1 0.00025 0.018 2 0.018
tRNA-Cys 67 1 1 0.00132 0.088 2 0.088
tRNA-Gln 72 1 1 0.00025 0.018 2 0.018
tRNA-Glu 69 1 1 0.00027 0.018 2 0.018
tRNA-Leu 75 1 1 0.00024 0.018 2 0.018
tRNA-Met 68 1 1 0.00027 0.018 2 0.018
tRNA-Ser 60 2 2 0.00091 0.055 3 0.054
tRNA-Thr 70 2 2 0.00052 0.037 3 0.037
tRNA-Val 67 1 1 0.00027 0.018 2 0.018
Mitogenome 16,344 358 359 0.00064 10.509 96 0.997
1S = number of variable sites; Eta =  the total number of mutations; π = nucleotide diversity (per site); k = average 
number of nucleotide differences; h =  number of haplotypes; Hd = haplotype (gene) diversity. 
2The D-loop region is additionally subdivided into the D-loop beginning and the D-loop end (hypervariable regions 
1 and 2) due to their specificity of connection and the inscription of entire mtDNA replication. *Inter CYTB tRNA-
Thr region according to the referent mitogenome (GenBank accession number V00654) does not belong either to 
the CYTB or tRNA-Thr, and the same applies to the Inter tRNA-Ser tRNA-Asp region. Other tRNA regions that did 
not show mutations are not included in the table.
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observed in the global data set analyzed by Cubric-Curik 
et al. (2022), in which the D-loop was the most diverse 
mitogenome region, whereas the observed diversity of 
the NDH5 gene was among the highest.

The phylogenetic relationship (mutational differences) 
of all complete mitogenomes observed in the Holstein 
breed (haplotypes reported in GenBank) together with 
several haplotypes representing all other existing hap-
logroups is shown in Figure 2.

Overall, most haplotypes of Holstein cattle (94%) 
not sampled in Croatia were classified as T3, which was 
expected because T3 is the predominant haplogroup char-
acteristic of cattle of European origin (Figure 2), whereas 
only 1 T1 (Italy) and 1 T4 (Korea) haplotype were found 
(detailed description in Supplemental Table S2). In the 
Croatian Holstein population, following the pattern 
observed for Holstein cattle, 91 haplotypes (95%) were 
assigned to the T3 haplogroup, and we also identified 2 
T2 haplotypes, 1 T1 haplotype, and 1 T5 haplotype. Ac-
cording to Brajkovic (2019), the presence of T1, T2, and 
T5 haplotypes is most likely the consequence of genetic 
upgrading of local Croatian breeds with Holstein bulls, as 

T1, T2, and T5 haplotypes were observed in Istrian cattle 
(T1 with 6.7%), Croatian Busha cattle (T1 with 24% and 
T2 with 32%), and Slavonian Syrmian Podolian cattle (T5 
with 25%)

Variance Components and Quantitative  
Genetic Parameters

The results of the quantitative genetic analysis of 
phenotypic variation for milk production traits in the 
Croatian Holstein breed are presented in Table 3 for the 
different models analyzed (CYTO, HAPLO, AMINO, 
EVOL, and SNPmt). In addition to the estimated variance 
components, the contribution of mitochondrial variation 
was presented as a proportion of phenotypic variation 
alongside the additive contribution of autosomal chro-
mosomes, the additive contribution of the X chromosome 
(x2), and other random environmental effects presented 
as contemporary group and permanent environment ef-
fects. The estimated heritability (phenotypic variance 
explained by the additive autosomal component) was 
within the range found in less complex modeling of the 

Brajkovic et al.: MITOGENOME IMPACT ON CATTLE MILK PRODUCTION

Figure 2. Median joining network representing the phylogenetic relationship (mutational differences) of all complete mitogenomes found in 
GenBank and assigned to the Holstein breed (labeled with the letters HC if they were Croatian Holstein and HW if they were found in populations 
of other Holstein animals), together with several haplotypes representing cattle with other haplogroups (labeled with the letter O as representatives 
of other breeds). The plus sign within the haplotypes indicates the 10% of the best haplotypes with the largest random solution effects for milk, fat, 
and protein, and the minus sign within the haplotypes indicates the 10% of the worst haplotypes with the smallest random solution effects.
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same data set (Brajkovic, 2019). Specifically, the esti-
mated heritability for milk yield was between 0.22 and 
0.32 for all models (CYTO, HAPLO, AMINO, EVOL, 
and SNPmt), with estimated heritability for fat yield 
in a similar range, between 0.22 and 0.29, and for pro-
tein yield between 0.23 and 0.33. For all 3 milk traits, 
the highest heritability was observed in the EVOL and 
SNPmt model, whereas the CYTO and HAPLO models 
had the lowest heritability. This could be consistent with 
the recommendation from Van Vleck (1993, p. 228): 
“Heritability (additive direct) can be overestimated from 
covariances between relatives with the same cytoplasm 
if cytoplasmic effects on the trait are real and if those 
effects are ignored.”

The estimated proportion of phenotypic variance of 
milk yield, fat yield and protein yield captured by mi-
tochondrial variation (m2) was significant in all models 
except the EVOL model, where all estimates were zero or 
negligible and nonsignificant (Table 3).

These results suggest that grouping mitochondrial 
effect into main evolutionary haplogroups is missing 
variation within these groups. In all other models, the 
estimated m2 for all 3 traits was significantly positive and 
ranged from 0.05 to 0.07. The highest estimates, either 
0.06 or 0.07, were consistently obtained for all 3 traits 
for the HAPLO model, whereas estimates obtained with 
the CYTO and AMINO models were between 0.05 (fat 
yield) to 0.07 (protein yield). Slightly lower estimates 
(0.05) were obtained in SNPmt models for all 3 traits.

To our knowledge, this was the first time that mito-
chondrial and additive effects of the X chromosome were 
modeled together. This was important to avoid confound-
ing between capturing variation due to the X chromo-
some and the mitogenome. For all 3 milk production 
traits, no significant proportion of phenotypic variance 
was explained by X chromosome additive effects (x2). 
However, null estimates are not biologically plausible, 
as it can be assumed that genes on the X chromosome 
contribute to small variations in milk production traits 
(Sanchez et al., 2023). It is noteworthy that x2 was be-
tween 0.01 and 0.04 only in one of our models (R-INLA 
version 21.11.22), but this did not affect the estimated 
m2 values for any of the 3 milk production traits ana-
lyzed (Supplemental Table S5, see Notes). We attribute 
the instability of the X chromosome effects to the high 
correlation between the classical additive relationship 
matrix and the relationship matrix of sex (X chromo-
some), as evidenced by a Mantel test correlation of 0.955 
(P < 0.001 after 100 permutations). To exclude possible 
confounding between X chromosome and mitogenome 
effects, we performed additional analyses excluding only 
the mitogenome effects. As we did not observe nonzero 
x2 values, we concluded that our m2 estimates were not 
influenced by confounding with X chromosome effects.

Brajkovic et al.: MITOGENOME IMPACT ON CATTLE MILK PRODUCTION
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The random effects of the contemporary group and 
the permanent environment were stable in all different 
mitochondrial models.

The SNPmt model reduced the estimate of variance 
and range between location effects indicating possible 
confounding between these 2 effects. The distributions 
of the estimated haplotype effects for the milk produc-
tion traits (HAPLO model) are shown in Figure 3. The 
range of estimated haplotype effects was approximately 
between −0.5 and 0.5 phenotypic standard deviations, 
which is a large effect.

For all traits analyzed, the best and worst haplotypes 
were those assigned to the T3 haplogroup, the most com-
mon haplogroup in European cattle, whereas other non-
T3 haplotypes (T1, T2, and T5) were mainly distributed 
within 50% of the worst haplotypes for milk production. 
The results suggest that if there is a difference between 
the haplogroups, their distribution of haplotype effects is 
likely to overlap. Unfortunately, we could not verify this 
statement due to the small number of non-T3 haplotypes. 
High linear correlation between haplotype effects of all 
milk production traits (r = 0.83, 0.98, and 0.85 for milk 
yield, protein yield, and fat yield, respectively) were ob-
served pointing to its pleiotropic behavior of nonrecom-
bining mitochondrial haplotypes considered as a single 
gene.

Decomposition of Mitogenome Variance  
to Gene Regions

By applying the SNPmt model to estimate mitochon-
drial effects, we were able to decompose the contribu-
tion of functionally or positionally specific mitogenome 
regions to the total variance between mitogenome ef-
fects. For this analysis, we used the approach of Lara et 
al. (2022) for the autosomal genome. This approach is 
important because the mitogenome does not recombine, 
meaning that covariances between some functionally re-
lated SNPs can be important components of the variance 
between mitogenome effects. The results of the variance 
decomposition, separated by specific mitogenome re-
gion, are shown in Figure 4 and Supplemental Tables S3 
and S4 (see Notes).

A very similar pattern of variance decomposition was 
observed for all 3 milk production traits, suggesting that 
the influence of the mitogenome on milk yield, fat yield, 
and protein yield may occur through similar biological 
processes. For all 3 traits, the largest contribution to 
variance was observed for the D-loop end, followed by 
the ND5 and ND4, whereas the contribution of COX1, 
D-loop beginning, CYTB, 12S RNA, 16S RNA, ATP6, 
COX2, COX3, ND1, ND2, and ND6 was non-negligible.

At the same time, the estimated covariances were larger 
between SNPs located in different mitogenome regions 

Brajkovic et al.: MITOGENOME IMPACT ON CATTLE MILK PRODUCTION

Figure 3. Distributions of haplotype effects in phenotypic SD for 
milk production traits in the Croatian Holstein population.
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and, with few exceptions, were predominantly negative 
(Figure 4). In contrast, the only substantial (negative) 
covariance within mitogenome regions was estimated 
between SNPs located in the D-loop end. We also ana-
lyzed variance of mitogenome regions as a function of 
the number of polymorphic sites using linear regressions 
(for more information, refer to Supplemental Figures S1 
and S2 [see Notes]).

Implications, Limitations, and Future Work

The impact of mitogenome on milk production traits 
has been intensively studied at the end of 20th century 
using the cytoplasmic model (Bell et al., 1985; Kennedy, 
1986; Schutz et al., 1994; Boettcher and Gibson, 1997; 
Albuquerque et al., 1998; Roughsedge et al., 1999). 
Although estimated phenotypic variance explained by 
different maternal lineages (m2 ranging from 0% to 10%) 
has pointed to the possible considerable effect of the mi-
togenome, the observed results were never implemented 
in practical cattle dairy breeding. The lack of understand-
ing of why estimated cytoplasmic effects were zero in 
some populations and 10% in other populations is one 
potential explanation. Another potential explanation 
was questioning how well maternal lineages used in the 
cytoplasmic models reflect the true variation present in 
cattle mitogenome, with high possibility that some ma-
ternal lineages are identical or at least phylogenetically 
connected. In the end, the lack of a breeding concept on 
how to use mitogenome variation was probably the final 
decisive explanation for ignoring cytoplasmic effects 
in practical cattle breeding. At the same time, simula-
tions by Mafra Fortuna et al. (2024) have shown that the 
inclusion of mitochondrial DNA variation increases the 
accuracy in different animal categories by between +0.01 
and +0.05, though with a considerable variation between 
replicates similar to large variation in past studies on 
phenotypic variance explained by different maternal 
lineages.

This study has been driven by recent advances in mi-
tochondrial research, where the functional capabilities 
of mitochondria have implications for crucial biological 
processes within the cell that extend far beyond their 
fundamental role in oxidative phosphorylation, the Krebs 
cycle, and fatty acid oxidation (Al-Kafaji and Golbahar, 
2013; Picard et al., 2018; McGuire, 2019; Monzel et al., 
2024; Murphy and O’Neill, 2024).

With this in mind, we would be surprised if variation 
in the mitogenome had no effect on highly intensive milk 
production, a stressful and energy-consuming biological 
process (Favorit et al., 2021). For example, mitochon-
drial protein gene expression and the oxidative phos-
phorylation pathway have been shown to be associated 
with feed efficiency and energy balance in dairy cows 
(Dorji et al., 2020, 2021). More recently, mitochondrial 
efficiency has been linked to mtDNA copy number and 
associated with production in beef (Sanglard et al., 2023) 
and dairy (Laubenthal et al., 2016; Weikard and Kuehn, 
2018) cattle.

We went beyond cytoplasmic modeling and showed, 
based on the complete mitogenome information, that 
substantial phenotypic variance in milk production traits 
(milk, fat, and protein yield), ranging from 5% to 7% 

Brajkovic et al.: MITOGENOME IMPACT ON CATTLE MILK PRODUCTION

Figure 4. Mitogenome variance decomposition by specific mitoge-
nome regions (variances and covariances between and within defined 
mitogenome regions) estimated for milk production traits in Holstein 
cows: milk yield, fat yield, and protein yield.
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across the 3 traits, was influenced by the mitogenome. 
Our analyses were based on complex modeling and 
provided additional insights into the influence of the 
mitogenome on milk production traits. Thus, we were 
able to show that mitogenome diversity in Croatian Hol-
steins contributes substantially to considerable variation 
in milk production traits between different haplotypes. 
We are aware that despite the large number of complete 
mitogenomes (109), the total number of lactating cows in 
the dataset was relatively small compared with classical 
genetic analyses of quantitative traits in dairy cattle. For 
this reason, we expect that similar analyses will be per-
formed in different dairy breeds based on a larger number 
of complete mitogenomes and lactating cows. The routine 
use of low-coverage whole-genome sequences, which 
are already on the market, offers such an opportunity at 
no additional cost (Sanglard et al., 2022). Alternatively, 
some commercial SNP arrays provide good coverage of 
complete mitogenome polymorphism (Brajkovic et al., 
2023). We were not able to study the separation of the 
influence of the nuclear genome and the mitogenome 
because we did not have genotype information for the 
nuclear genome SNPs, though we did control for nuclear 
genome via expected autosomal and X chromosome 
relationships based on pedigrees. The observation that 
SNPmt model reduced the estimate of variance and range 
between location effects is puzzling and possibly indi-
cates confounding between these 2 effects. This result is 
pointing toward a need for future research on modeling 
genetic and environmental or geographic effects with 
larger data sets.

Over 1,158 proteins are required for mitochondrial 
function in mammals, almost all of which are controlled 
by the nuclear genome, and interaction effects or incom-
patibility between nuclear and mitogenome SNPs have 
already been demonstrated (Wang et al., 2017; Dorji et 
al., 2020; Kwon et al., 2022; Ward et al., 2022). This 
indicates the need for further study of the separation of 
the influence of the nuclear genome and the mitogenome 
and possibly even their interaction. A good example of 
such joint modeling of autosomal, nuclear mitochon-
drial (past mitogenome now part of nuclear genome), 
and mitogenome genetic variation for a complex trait in 
humans (neuroticism) was recently performed by Xia et 
al. (2023). In addition, we did not consider the effects of 
heteroplasmy (the occurrence of multiple mtDNA haplo-
types within a single cell or organism), which is known 
to affect complex traits in humans (Ye et al., 2014).

Our study demonstrates a pleiotropic effect of mitoge-
nomes with high correlations of the estimated haplotype 
effects between different milk production traits (r >0.83), 
suggesting that selection of some haplotypes might be 
favorable for several traits. More drastically, this result 
opens the quest for superior mitogenomes that could be 

created by genetic engineering, especially because sub-
stantial progress has recently been made in mitogenome 
editing in experimental mammals (Gammage et al., 
2018; Rai et al., 2018; Klucnika and Ma, 2020; Barrera-
Paez and Moraes, 2022). For the introduction of mitoge-
nome gene editing in practical cattle breeding, either by 
introducing new variation or by enabling recombination 
between different haplotypes (simultaneous gene editing 
at several SNP positions), a much better understanding is 
needed of how mitogenome genetic variation contributes 
to phenotypic differences without neglecting mito-nucle-
ar interactions. The separation of haplotype and single 
SNP effects in modeling the effects of the mitogenome 
on complex traits, together with comprehensive empiri-
cal evidence, is certainly the first step required.

CONCLUSIONS

In this pioneering study, we used complete mitogenome 
information to evaluate its influence on milk production 
traits in Croatian Holstein dairy cows. Our findings 
reveal substantial proportions of phenotypic variance 
explained by 4 different mitogenome models (CYTO, 
HAPLO, AMINO, and SNPmt), ranging from 5% to 
7% across all 3 milk traits, whereas the contribution by 
EVOL was negligible. The mitogenome’s impact on milk 
production likely arises from its high diversity despite 
its small size, a factor possibly overlooked in previous 
cytoplasmic models. Furthermore, our study shows that 
integrating complete mitogenome data offers additional 
insights, allowing identification of haplotypes or SNPs 
contributing to differences and reveals the pleiotropic 
effects of haplotypes, favorable or unfavorable, on milk, 
fat, and protein yield. Although these results require vali-
dation in other cattle populations with more sequenced 
mitogenomes and phenotyped animals, the potential for 
using mitogenome data in animal breeding is promising, 
especially as sequencing costs decrease.
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Nonstandard abbreviations used: AMINO = amino 
acid model with unique amino acid sequences; BEAST 
= Bayesian evolutionary analysis sampling trees; c2 = 
phenotypic variance proportion explained by contempo-
rary group component; CYTO = cytoplasmic model with 
maternal lineages; eta = total number of mutations; EVOL 
= evolutionary model based on a phylogenetic analysis 
using BEAST phylogenetic analysis; h = number of hap-
lotypes; HAPLO = haplotypic model with mitogenome 
sequences; HC = Croatian Holstein; Hd = haplotype 
(gene) diversity; HW = other Holstein; INLA = integrated 
nested Laplace approximation; k = average number of 
nucleotide differences; m2 = proportion of phenotypic 
variance explained by mitogenome variation; NCBI = Na-
tional Center for Biotechnology Information; O = other 
breeds; p2 = phenotypic variance proportion explained 
by permanent environment; S = number of variable sites; 
SNPmt = mitogenome SNP model; SPDE = stochastic 
partial differential equation; x2 = phenotypic variance 
proportion explained by X chromosome component; π = 
nucleotide diversity per site; ρ = spatial range parameter.
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